Skip to main content

Advertisement

Log in

Evidence for the importance of invasive Dreissena veligers as a novel prey item for larval fish in Lake Huron

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The establishment of invasive dreissenid mussels Dreissena polymorpha and Dreissena rostriformis bugensis in the Laurentian Great Lakes has affected multiple aspects of the ecosystem. However, the effects of their larvae (veligers) on lower trophic levels are relatively unknown. Previous research has documented that some larval fishes consume veligers, but it is unclear if they select for veligers. To assess the role of veligers in larval fish diets in Lake Huron, we examined the diets of larval burbot Lota lota, rainbow smelt Osmerus mordax, and Coregonus spp., mainly bloater Coregonus hoyi, sampled in July of 2017. Preference for available zooplankton prey was evaluated using Vanderploeg and Scavia’s E*. Results indicated that veligers were on average avoided by large larval burbot, rainbow smelt, and coregonines but were sometimes preferred by small (< 7 mm) and medium-sized (7–10 mm) larval burbot. A mixed model analyzing factors contributing to veliger preference by larval burbot indicated that greater environmental zooplankton prey size is associated with more positive preference for veligers. Thus, veligers may be important for gape-limited larval fish. We also found that, on average, larval burbot and coregonines consumed larger veligers than those sampled in the environment. Overall, consideration of larval fishes’ ability to exploit veligers could help managers to understand the role of dreissenid mussels in Great Lakes food webs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The zooplankton data used in this manuscript can be found here: Bunnell, D.B., Armenio, P.M., Eaton, L.A., and Watson, N.M., 2021, 2017 Zooplankton Data from Lake Huron: U.S. Geological Survey data release, https://doi.org/10.5066/P9BNQPPM. The ichthyoplankton and other datasets are available here: Dieter, P.M., Eaton, L.A., Marano, E.C., and Bunnell, D.B., 2022, Larval fish and water profile data from Lake Huron in 2017: U.S. Geological Survey data release, https://doi.org/10.5066/P9Q8KNZC.

References

  • Auer, N. A. (Ed.), 1982. Identification of larval fishes of the Great Lakes basin with emphasis on the Lake Michigan drainage. Great Lakes Fishery Commission.

  • Barbiero, R. P., M. Balcer, D. C. Rockwell & M. L. Tuchman, 2009. Recent shifts in the crustacean zooplankton community of Lake Huron. Canadian Journal of Fisheries and Aquatic Sciences 66: 816–828.

    Article  Google Scholar 

  • Bates, D., M. Mächler, B. Bolker & S. Walker, 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48. https://doi.org/10.18637/jss.v067.i01.

    Article  Google Scholar 

  • Boltovskoy, D. & N. Correa, 2014. Ecosystem impacts of the invasive bivalve Limnoperna fortunei (golden mussel) in South America. Hydrobiologia 746: 81–95. https://doi.org/10.1007/s10750-014-1882-9.

    Article  CAS  Google Scholar 

  • Bowen, K. L., A. J. Conway & W. J. Currie, 2018. Could dreissenid veligers be the lost biomass of invaded lakes? Freshwater Science 37: 315–329. https://doi.org/10.1086/697896.

    Article  Google Scholar 

  • Bremigan, M. T. & R. A. Stein, 1994. Gape-dependent larval foraging and zooplankton size: implications for fish recruitment across systems. Canadian Journal of Fisheries and Aquatic Sciences 51: 913–922. https://doi.org/10.1139/f94-090.

    Article  Google Scholar 

  • Bunnell, D. B., R. P. Barbiero, S. A. Ludsin, C. P. Madenjian, G. J. Warren, D. M. Dolan, T. O. Brenden, R. Briland, O. T. Gorman, J. X. He, T. H. Johengen, B. F. Lantry, B. M. Lesht, T. F. Nalepa, S. C. Riley, C. M. Riseng, T. J. Treska, I. Tsehaye, M. G. Walsh, et al., 2014. Changing ecosystem dynamics in the Laurentian Great Lakes: Bottom-up and top-down regulation. BioScience 64: 26–39. https://doi.org/10.1093/biosci/bit001.

    Article  Google Scholar 

  • Bunnell, D. B., H. J. Carrick, C. P. Madenjian, E. S. Rutherford, A. H. Vanderploeg, R. P. Barbiero, E. Hinchey-Malloy, S. A. Pothoven, C. M. Riseng, R. M. Claramunt, H. A. Bootsma, A. K. Elgin, M. D. Rowe, S. M. Thomas, B. A. Turschak, S. Czesny, K. L. Pangle, & D. M. Warner, 2018. Are changes in lower trophic levels limiting prey-fish biomass and production in Lake Michigan? Great Lakes Fishery Commission Miscellaneous Publication, 2018–1.

  • Burlakova, L. E., R. P. Barbiero, A. Y. Karatayev, S. E. Daniel, E. K. Hinchey & G. J. Warren, 2018. The benthic community of the Laurentian Great Lakes: analysis of spatial gradients and temporal trends from 1998 to 2014. Journal of Great Lakes Research 44: 600–617. https://doi.org/10.1016/j.jglr.2018.04.008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlsson, N. O. L. & D. L. Strayer, 2009. Intraspecific variation in the consumption of exotic prey—a mechanism that increases biotic resistance against invasive species? Freshwater Biology 54: 2315–2319. https://doi.org/10.1111/j.1365-2427.2009.02263.x.

    Article  Google Scholar 

  • Carrick, H. J., E. Butts, D. Daniels, M. Fehringer, C. Frazier, G. L. Fahnenstiel, S. Pothoven & H. A. Vanderploeg, 2015. Variation in the abundance of pico, nano, and microplankton in Lake Michigan: historic and basin-wide comparisons. Journal of Great Lakes Research 41: 66–74. https://doi.org/10.1016/j.jglr.2015.09.009.

    Article  Google Scholar 

  • Chesson, J., 1978. Measuring preference in selective predation. Ecology 59: 211–215.

    Article  Google Scholar 

  • Confer, J. L. & P. I. Blades, 1975. Omnivorous zooplankton and planktivorous fish. Limnology and Oceanography 20: 571–579. https://doi.org/10.4319/lo.1975.20.4.0571

  • Crane, D. P. & D. W. Einhouse, 2016. Changes in growth and diet of smallmouth bass following invasion of Lake Erie by the round goby. Journal of Great Lakes Research 42: 405–412. https://doi.org/10.1016/j.jglr.2015.12.005.

    Article  Google Scholar 

  • Dieter, P. M., D. B. Bunnell & D. M. Warner, 2022. Seasonal variability of invertebrate prey diet and selectivity of the dominant forage fishes in Lake Huron. Food Webs 30: e00215. https://doi.org/10.1016/j.fooweb.2021.e00215.

    Article  Google Scholar 

  • Donner, M. T. & R. Eckmann, 2011. Diel vertical migration of larval and early-juvenile burbot optimises survival and growth in a deep, pre-alpine lake. Freshwater Biology 56: 916–925.

    Article  Google Scholar 

  • EPA, U. S., 2016. Standard Operating Procedure for Zooplankton Analysis-LG403, US Environmental Protection Agency, Chicago:

    Google Scholar 

  • Eppehimer, D. E., D. B. Bunnell, P. M. Armenio, D. M. Warner, L. A. Eaton, D. J. Wells & E. S. Rutherford, 2019. Densities, diets, and growth rates of larval alewife and bloater in a changing Lake Michigan ecosystem. Transactions of the American Fisheries Society 148: 755–770. https://doi.org/10.1002/tafs.10171.

    Article  Google Scholar 

  • Evans, M. A., G. Fahnenstiel & D. Scavia, 2011. Incidental oligotrophication of North American Great Lakes. Environmental Science and Technology 45: 3297–3303. https://doi.org/10.1021/es103892w.

    Article  CAS  PubMed  Google Scholar 

  • Fox, J. & S. Weisberg, 2019. An R Companion to Applied Regression, Third edition. Sage, Thousand Oaks CA. https://socialsciences.mcmaster.ca/jfox/Books/Companion/. Accessed 1 January, 2021.

  • Frank, K. T. & W. C. Leggett, 1986. Effect of prey abundance and size on the growth and survival of larval fish: an experimental study employing large volume enclosures. Marine Ecology Progress Series 34: 11–22.

    Article  Google Scholar 

  • George, E. M., E. F. Roseman, B. M. Davis & T. P. O’Brien, 2013. Feeding ecology of pelagic larval burbot in Northern Lake Huron, Michigan. Transactions of the American Fisheries Society 142: 1716–1723. https://doi.org/10.1080/00028487.2013.788561.

    Article  Google Scholar 

  • Ghan, D. & W. G. Sprules, 1993. Diet, prey selection, and growth of larval and juvenile burbot Lota lota (L.). Journal of Fish Biology 42: 47–64. https://doi.org/10.1111/j.1095-8649.1993.tb00305.x.

    Article  Google Scholar 

  • Gorman, O. T., 2019. Prey fish communities of the Laurentian Great Lakes: a cross-basin overview of status and trends based on bottom trawl surveys, 1978–2016. Aquatic Ecosystem Health & Management 22: 263–279. https://doi.org/10.1080/14634988.2019.1674012.

    Article  Google Scholar 

  • Hensler, S., J. X. He, & D. J. Jude, 2008. Burbot growth and diets in Lakes Michigan and Huron: an ongoing shift from native species to round gobies. American Fisheries Society Symposium, January.

  • Houde, E. D., 1994. Differences between marine and freshwater fish larvae: implications for recruitment. ICES Journal of Marine Science 51: 91–97.

    Article  Google Scholar 

  • Hoyle, J. A., T. Schaner, J. M. Casselman & R. Dermott, 1999. Changes in lake whitefish (Coregonus clupeaformis) stocks in eastern Lake Ontario following Dreissena mussel invasion. Great Lakes Research Review 4: 5–10.

    Google Scholar 

  • Jarrin, J. R. M., K. L. Pangle, J. M. Reichert, T. B. Johnson, J. Tyson & S. A. Ludsin, 2015. Influence of habitat heterogeneity on the foraging ecology of first feeding yellow perch larvae, Perca flavescens, in western Lake Erie. Journal of Great Lakes Research 41: 208–214.

    Article  Google Scholar 

  • Jørgensen, C., T. Kørboe, F. Møhlenberg & H. Riisgård, 1984. Ciliary and mucus-net filter feeding, with special reference to fluid mechanical characteristics. Marine Ecology Progress Series 15: 283–292. https://doi.org/10.3354/meps015283.

    Article  Google Scholar 

  • Karatayev, A. Y., L. E. Burlakova, & D. K. Padilla, 2002. Impacts of zebra mussels on aquatic communities and their role as ecosystem engineers. Invasive aquatic species of Europe. Distribution, impacts and management, 433–446. https://doi.org/10.1007/978-94-015-9956-6_43

  • Karatayev, A. Y., D. Boltovskoy, D. K. Padilla & L. E. Burlakova, 2007. The invasive bivalves Dreissena polymorpha and Limnoperna fortunei: parallels, contrasts, potential spread and invasion impacts. Journal of Shellfish Research 26: 205–213.

    Article  Google Scholar 

  • Keeler, K. M., D. B. Bunnell, J. S. Diana, J. V. Adams, J. G. Mychek-Londer, D. M. Warner & M. R. Vinson, 2015. Evaluating the importance of abiotic and biotic drivers on Bythotrephes biomass in Lakes Superior and Michigan. Journal of Great Lakes Research 41: 150–160.

    Article  Google Scholar 

  • Kirkendall, D. S., D. B. Bunnell, P. M. Armenio, L. A. Eaton, A. S. Trebitz & N. M. Watson, 2021. Spatial and temporal distributions of Dreissena spp. veligers in Lake Huron: does calcium limit settling success? Journal of Great Lakes Research 47: 1040–1049. https://doi.org/10.1016/j.jglr.2021.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kupren, K., I. Trąbska, D. Żarski, S. Krejszeff, K. Palińska-Żarska & D. Kucharczyk, 2014. Early development and allometric growth patterns in burbot Lota lota L. Aquaculture International 22: 29–39.

    Article  Google Scholar 

  • Lavrentyev, P. J., H. A. Vanderploeg, G. Franzé, D. H. Chacin, J. R. Liebig & T. H. Johengen, 2014. Microzooplankton distribution, dynamics, and trophic interactions relative to phytoplankton and quagga mussels in Saginaw Bay, Lake Huron. Journal of Great Lakes Research 40: 95–105. https://doi.org/10.1016/j.jglr.2013.11.012.

    Article  Google Scholar 

  • Lechowicz, M. J., 1982. The sampling characteristics of electivity indices. Oecologia 52: 22–30.

    Article  PubMed  Google Scholar 

  • Lucke, V. S., T. R. Stewart, M. R. Vinson, J. D. Glase & J. D. Stockwell, 2020. Larval coregonus spp. diets and zooplankton community patterns in the Apostle Islands, Lake superior. Journal of Great Lakes Research 46: 1391–1401.

    Article  Google Scholar 

  • Luo, M. K., C. P. Madenjian, J. S. Diana, M. S. Kornis & C. R. Bronte, 2019. Shifting diets of lake trout in Northeastern Lake Michigan. North American Journal of Fisheries Management 39: 793–806. https://doi.org/10.1002/nafm.10318.

    Article  Google Scholar 

  • Martin, B. T., S. J. Czesny & D. H. Wahl, 2011. Vertical distribution of larval fish in pelagic waters of southwest Lake Michigan: Implications for growth, survival, and dispersal. Journal of Great Lakes Research 37: 279–288.

    Article  Google Scholar 

  • McPhail, J. D. & V. L. Paragamian, 2000. Burbot biology and life history. Burbot: biology, ecology, and management. American Fisheries Society, Fisheries Management Section, Publication 1: 11–23.

    Google Scholar 

  • Miller, T. J., L. B. Crowder, J. A. Rice & E. A. Marschall, 1988. Larval size and recruitment mechanisms in fishes: toward a conceptual framework. Canadian Journal of Fisheries and Aquatic Sciences 45: 1657–1670. https://doi.org/10.1139/f88-197.

    Article  Google Scholar 

  • Molloy, D. P., A. Y. Karatayev, L. E. Burlakova, D. P. Kurandina & F. Laruelle, 1997. Natural enemies of zebra mussels: predators, parasites, and ecological competitors. Reviews in Fisheries Science 5: 27–97.

    Article  Google Scholar 

  • Morrison, T. W., W. E. Lynch Jr. & K. Dabrowski, 1997. Predation on zebra mussels by freshwater drum and yellow perch in western Lake Erie. Journal of Great Lakes Research 23: 177–189.

    Article  Google Scholar 

  • Nack, C. C., K. E. Limburg & R. E. Schmidt, 2015. Diet composition and feeding behavior of larval American shad, Alosa sapidissima (Wilson), after the introduction of the invasive zebra mussel, Dreissena polymorpha (Pallas), in the Hudson River estuary, NY. Northeastern Naturalist 22: 437–450. https://doi.org/10.1656/045.022.0216.

    Article  Google Scholar 

  • Nunn, A. D., L. H. Tewson & I. G. Cowx, 2012. The foraging ecology of larval and juvenile fishes. Reviews in Fish Biology and Fisheries 22: 377–408.

    Article  Google Scholar 

  • O’Brien, T. P., W. W. Taylor, A. S. Briggs & E. F. Roseman, 2012. Influence of water temperature on rainbow smelt spawning and early life history dynamics in St. Martin Bay, Lake Huron. Journal of Great Lakes Research 38: 776–785. https://doi.org/10.1016/j.jglr.2012.09.017.

    Article  Google Scholar 

  • Paolucci, E. M., D. H. Cataldo, C. M. Fuentes & D. Boltovskoy, 2007. Larvae of the invasive species Limnoperna fortunei (Bivalvia) in the diet of fish larvae in the Paraná River, Argentina. Hydrobiologia 589: 219–233. https://doi.org/10.1007/s10750-007-0734-2.

    Article  Google Scholar 

  • Paolucci, E. M., D. H. Cataldo & D. Boltovskoy, 2010. Prey selection by larvae of Prochilodus lineatus (Pisces: Curimatidae): Indigenous zooplankton versus veligers of the introduced bivalve Limnoperna fortunei (Bivalvia: Mitilidae). Aquatic Ecology 44: 255–267. https://doi.org/10.1007/s10452-009-9263-6.

    Article  Google Scholar 

  • Paolucci, E. M., P. Almada, D. H. Cataldo & D. Boltovskoy, 2015. Native fish larvae take advantage of introduced mussel larvae: field evidence of feeding preferences on veligers of the introduced freshwater bivalve Limnoperna fortunei. Hydrobiologia 745: 211–224. https://doi.org/10.1007/s10750-014-2108-x.

    Article  Google Scholar 

  • Piry, S., A. Alapetite, J. M. Cornuet, D. Paetkau, L. Baudouin & A. Estoup, 2004. GeneClass2: a software for genetic assignment and first-generation migrant detection. Journal of Heredity 95: 536–539.

    Article  CAS  PubMed  Google Scholar 

  • Pothoven, S. A. & A. K. Elgin, 2019. Dreissenid veliger dynamics along a nearshore to offshore transect in Lake Michigan. Journal of Great Lakes Research 45: 300–306.

    Article  Google Scholar 

  • Pothoven, S. A. & C. P. Madenjian, 2008. Changes in consumption by alewives and lake whitefish after dreissenid mussel invasions in Lakes Michigan and Huron. North American Journal of Fisheries Management 28: 308–320.

    Article  Google Scholar 

  • Pothoven, S. A. & T. F. Nalepa, 2006. Feeding ecology of lake whitefish in Lake Huron. Journal of Great Lakes Research 32: 489–501.

    Article  Google Scholar 

  • Pothoven, S. & C. Olds, 2020. Spatial variation in feeding ecology of age-0 lake whitefish Coregonus clupeaformis in Lake Huron. Journal of Freshwater Ecology 35: 349–366. https://doi.org/10.1080/02705060.2020.1816228.

    Article  CAS  Google Scholar 

  • R Core Team, 2016. R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 1 September, 2020.

  • Rannala, B. & J. L. Mountain, 1997. Detecting immigration by using multilocus genotypes. Proceeding of the National Academy of Science USA 94: 9197–9221.

    Article  CAS  Google Scholar 

  • Riley, S.C., E. F. Roseman, D. W. Hondorp, M. A. Chriscinske, E. Galassini, M. Smith, 2017. Status and trends of the Lake Huron offshore demersal fish community, 1976–2016. Compiled reports to the Great Lakes Fishery Commission of the Annual Bottom Trawl and Acoustic Surveys for 2016. http://www.glfc.org/pubs/lake_committees/common_docs/CompiledReportsfromUSGS2017.pdf. Accessed 30 September, 2020.

  • Ritz, T. A., N. R. Jensen & J. B. Leonard, 2020. Larval morphology of North American burbot (Lota lota maculosa) from two spatially separated populations. Hydrobiologia 14: 2981–2998.

    Article  Google Scholar 

  • Roseman, E. F. & T. P. O’Brien, 2013. Spatial distribution of pelagic fish larvae in the northern main basin of Lake Huron. Aquatic Ecosystem Health & Management 16: 311–321. https://doi.org/10.1080/14634988.2013.824348.

    Article  Google Scholar 

  • Schael, D. M., L. G. Rudstam & J. R. Post, 1991. Gape limitation and prey selection in larval yellow perch (Perca flavescens), freshwater drum (Aplodinotus grunniens), and black crappie (Pomoxis nigromaculatus). Canadian Journal of Fisheries and Aquatic Sciences 48: 1919–1925.

    Article  Google Scholar 

  • Sommerfeld, N. & R. Holzman, 2019. The interaction between suction feeding performance and prey escape response determines feeding success in larval fish. Journal of Experimental Biology 222: jeb204834.

    Article  PubMed  Google Scholar 

  • Stapanian, M. A., C. P. Madenjian, C. R. Bronte, M. P. Ebener, B. F. Lantry & J. D. Stockwell, 2008. Status of burbot populations in the Laurentian Great Lakes. American Fisheries Society Symposium 59: 111–130.

    Google Scholar 

  • Steinhart, G. B., R. A. Stein & E. A. Marschall, 2004. High growth rate of young-of-the-year smallmouth bass in Lake Erie: a result of the round goby invasion? Journal of Great Lakes Research 30: 381–389. https://doi.org/10.1016/S0380-1330(04)70355-X.

    Article  Google Scholar 

  • Stott, W., T. MacDougall, E. F. Roseman, S. Lenart, J. Chiotti, D. L. Yule & J. Boase, 2021. Genetic species identification of coregonines from juvenile assessment and commercial fisheries in Lake Erie, Detroit River, and St Clair River. Advances in Limnology 66: 403–425. https://doi.org/10.1127/adv_limnol/2021/0067.

    Article  Google Scholar 

  • Tang, H., H. A. Vanderploeg, T. H. Johengen & J. R. Liebig, 2014. Quagga mussel (Dreissena rostriformis bugensis) selective feeding of phytoplankton in Saginaw Bay. Journal of Great Lakes Research 40: 83–94. https://doi.org/10.1016/j.jglr.2013.11.011.

    Article  Google Scholar 

  • Taylor, J. L. & S. K. Arndt, 2013. Variability in burbot cohort abundance at juvenile and adult stages in Columbia Lake, British Columbia. Transactions of the American Fisheries Society 142: 1705–1715.

    Article  Google Scholar 

  • Vanderploeg, H. A. & D. Scavia, 1979a. Calculation and use of selectivity coefficients of feeding: zooplankton grazing. Ecological Modelling 7: 135–149. https://doi.org/10.1016/0304-3800(79)90004-8.

    Article  Google Scholar 

  • Vanderploeg, H. A. & D. Scavia, 1979b. Two electivity indices for feeding with special reference to zooplankton grazing. Journal of the Fisheries Research Board of Canada 36: 362–365. https://doi.org/10.1139/f79-055.

    Article  Google Scholar 

  • Vanderploeg, H. A., T. F. Nalepa, D. J. Jude, E. L. Mills, K. T. Holeck, J. R. Liebig, I. A. Grigorovich & H. Ojaveer, 2002. Dispersal and emerging ecological impacts of Ponto-Caspian species in the Laurentian great lakes. Canadian Journal of Fisheries and Aquatic Sciences 59: 1209–1228. https://doi.org/10.1139/f02-087.

    Article  Google Scholar 

  • Vanderploeg, H. A., J. R. Liebig, T. F. Nalepa, G. L. Fahnenstiel & S. A. Pothoven, 2010. Dreissena and the disappearance of the spring phytoplankton bloom in Lake Michigan. Journal of Great Lakes Research 36: 50–59. https://doi.org/10.1016/j.jglr.2010.04.005.

    Article  Google Scholar 

  • von Herbing, I. H. & S. M. Gallager, 2000. Foraging behavior in early Atlantic cod larvae (Gadus morhua) feeding on a protozoan (Balanion sp.) and a copepod nauplius (Psedodiaptomus sp.). Marine Biology 136: 591–602. https://doi.org/10.1007/s002270050719.

    Article  Google Scholar 

  • Willis, T. V. & J. J. Magnuson, 2006. Response of fish communities in five north temperate lakes to exotic species and climate. Limnology and Oceanography 51: 2808–2820. https://doi.org/10.4319/lo.2006.51.6.2808.

    Article  Google Scholar 

  • Withers, J. L., T. M. Sesterhenn, C. J. Foley, C. D. Troy & T. O. Höök, 2015. Diets and growth potential of early stage larval yellow perch and alewife in a nearshore region of southeastern Lake Michigan. Journal of Great Lakes Research 41: 197–209. https://doi.org/10.1016/j.jglr.2015.08.003.

    Article  Google Scholar 

  • Wright, D. I. & W. J. O’Brien, 1984. The development and field test of a tactical model of the Planktivorous feeding of white crappie (Pomoxis Annularis) ecological archives. Ecological Monographs 54: 65–98.

    Article  Google Scholar 

  • Wurtsbaugh, W. A. & D. Neverman, 1988. Post-feeding thermotaxis and daily vertical migration in a larval fish. Nature 333: 846–848.

    Article  Google Scholar 

Download references

Funding

This research was funded by the Environmental Protection Agency Great Lakes Restoration Initiative, in support of the Lake Huron Cooperative Science and Monitoring Initiative, as well as support from the University of Michigan School for Environment and Sustainability. We appreciate assistance from Lauren Eaton, Wendy Stott, Lindsie Egedy, Anne Cotter, and Darren Kirkendall for their assistance in the laboratory and with the data. We are grateful to the science and vessel crew of the R/V Sturgeon who assisted in the collection of samples for this study. We also appreciate the support provided by the Michigan Department of Natural Resources during manuscript revisions. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellary C. Marano.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Handling editor: Gideon Gal

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 74 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marano, E.C., Bunnell, D.B., Dieter, P.M. et al. Evidence for the importance of invasive Dreissena veligers as a novel prey item for larval fish in Lake Huron. Hydrobiologia 850, 3497–3516 (2023). https://doi.org/10.1007/s10750-023-05250-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05250-2

Keywords

Navigation