Skip to main content

Advertisement

Log in

Predicted changes in the distribution of Ostracoda (Crustacea) from river basins in the southern cone of South America, under two climate change scenarios

  • TRENDS IN AQUATIC ECOLOGY IV
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

While many studies predict changes in the distribution of individual species as a result of climate change, few studies have assessed such changes at the community level for aquatic invertebrates. We used ostracods (bivalved micro-crustaceans) to assess the effects of climate change on regional species richness, (re-) distribution and community composition across the river basins of the Southern Cone of South America. Using a range of niche-based models, we present projections of changes in diversity components in the light of two scenarios on increased carbon emissions: the moderate-optimistic (RCP 4.5) and the pessimistic (RCP 8.5) scenarios from four climate models on 2050 and 2080 scenarios. Future projections show increase in the number of (mapped) cells with a richness up to five species as compared to present-day situations. La Plata basin (LPLA) presents the highest species loss, mainly in the Paraguay and Paraná rivers, while the species gain occurred mainly in the La Puna Region, North Chile-Pacific Coast and southern LPLA basins. Global change might impact ostracod communities even on a medium term (2050). Despite losses of local species in all future scenarios, a small portion of the LPLA was identified as a potential future climatic refugia for ostracod communities, while the distribution area in Patagonia was predicted to be extremely small for some ostracods at the southernmost parts of South Argentina-South Atlantic Coast and South Chile-Pacific Coast basins in both futures. These results indicate that non-model organisms can also contribute greatly to formulate evidence-based management plans for aquatic ecosystems under climate change scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data published in this manuscript belong to the authors and are available for review if necessary.

References

  • Agostinho, A. A., L. C. Gomes, S. M. Thomaz & N. S. Hahn, 2004a. The upper Paraná River and its floodplain: main characteristics and perspectives for management and conservation. In Thomaz, S. M., A. A. Agostinho & N. S. Hahn (eds), The Upper Paraná River and Its Floodplain: Physical Aspects, Ecology and Conservation Backhuys Publishers, Leiden: 381–393.

    Google Scholar 

  • Agostinho, A. A., S. M. Thomaz & L. C. Gomes, 2004b. Threats for biodiversity in the floodplain of the Upper Paraná River: effects of the hydrological regulation by dams. Ecohydrology and Hydrobiology 4: 255–268.

    Google Scholar 

  • Allouche, O., A. Tsoar & R. Kadmon, 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 1223–1232.

    Article  Google Scholar 

  • Antiqueira, P. A., L. O. Petchey & G. Q. Romero, 2018. Warming and top predator loss drive ecosystem multifunctionality. Ecology Letters 21: 72–82.

    Article  PubMed  Google Scholar 

  • Araújo, M. B. & M. New, 2007. Ensemble forecasting of species distributions. Trends in Ecology and Evolution 22: 43–47.

    Article  Google Scholar 

  • Barros, V. & C. Vera, 2013. Cambio Climático en Argentina: Tendencias y Proyecciones: Centro de Investigaciones del Mar y la Atmósfera (CIMA). In: Tercera comunicación nacional de la Republica Argentina a la convencion marco de las naciones unidas sobre el Cambio Climático. Secretaría de Ambiente y Desarrollo Sustentable de la Nación, Buenos Aires.

  • Bellard, C., C. Bertelsmeier, P. Leadley, W. Thuiller & F. Courchamp, 2012. Impacts of climate change on the future of biodiversity. Ecology Letters 15: 365–377.

    Article  PubMed  PubMed Central  Google Scholar 

  • Berg, M., E. T. Kiers, G. Driessen, M. van der Heijden, B. W. Kooi, F. Kuenen, M. Liefting, H. A. Verhoef & J. Ellers, 2010. Adapt or disperse: understanding species persistence in achanging world. Global Change Biology 16: 587–598.

    Article  Google Scholar 

  • Birks, H. J. B., 2015. Some reflections on the refugium concept and its terminology in historical biogeography, contemporary ecology and global-change biology. Biodiversity 16: 196–212.

    Article  Google Scholar 

  • Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.

    Article  Google Scholar 

  • Busby, J. R., 1991. Bioclim – a bioclimatic analysis and predictive system. In Margules, C. R. & M. P. Austin (eds), Nature Conservation: Cost Effective Biological Surveys and Data Analysis CSIRO, Canberra: 64–68.

    Google Scholar 

  • Bush, A. & A. Hoskins, 2016. Does dispersal capacity matter for freshwater biodiversity under climate change? Freshwater Biology 62: 382–396.

    Article  Google Scholar 

  • Cálix, M., K. N. A. Alexander, A. Nieto, B. Dodelin, F. Soldati, D. Telnov, X. Vazquez-Albalate, O. Aleksandrowicz, P. Audisio, P. Istrate, N. Jansson, A. Legakis, A. Liberto, C. Makris, O. Merkl, R. Mugerwa Pettersson, J. Schlaghamersky, M. A. Bologna, H. Brustel, J. Buse, V. Novák & L. Purchart, 2018. European Red List of Saproxylic Beetles, IUCN, Brussels:

    Google Scholar 

  • Campos, R., E. O. Conceição, K. Martens & J. Higuti, 2019. Extreme drought periods can change spatial effects on periphytic ostracod metacommunities in river-floodplain ecosystems. Hydrobiologia 828: 369–381.

    Article  Google Scholar 

  • Campos, R., F. M. Lansac-Tôha, E. O. Conceição, K. Martens & J. Higuti, 2018. Factors affecting the metacommunity structure of periphytic ostracods (Crustacea, Ostracoda): a deconstruction approach based on biological traits. Aquatic Sciences 80: 1–16.

    Article  Google Scholar 

  • Cardoso, P., P. A. V. Borges, K. A. Triantis, M. A. Ferrández & J. L. Martín, 2011a. Adapting the IUCN Red List criteria for invertebrates. Biological Conservation 144: 2432–2440.

    Article  Google Scholar 

  • Cardoso, P., T. L. Erwin, P. A. V. Borges & T. R. New, 2011b. The seven impediments in invertebrate conservation and how to overcome them. Biological Conservation 144: 2647–2655.

    Article  Google Scholar 

  • Carpenter, G., A. N. Gillison & J. Winter, 1993. Domain: a flexible modeling procedure for mapping potential distributions of plants and animals. Biodiversity Conservation 2: 667–680.

    Article  Google Scholar 

  • Catullo, R. A., S. Ferrier & A. A. Hoffman, 2015. Extending spatial modelling of climatechange responses beyond the realizedniche: estimating, and accommodating, physiological limits and adaptiveevolution. Global Ecology and Biogeograph 24: 1192–1202.

    Article  Google Scholar 

  • Chen, I. C., J. K. Hill, R. Ohlemüller, D. B. Roy & C. D. Thomas, 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333: 1024–1026.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, A. C. & J. G. Morin, 1990. Patterns of reproduction in ostracodes: a review. Journal of Crustacean Biology 10: 184–212.

    Article  Google Scholar 

  • Conceição, E. O., J. Higuti, R. Campos & K. Martens, 2018. Effects of flood pulses on persistence and variability of pleuston communities in a tropical floodplain lake. Hydrobiologia 807: 175–188.

    Article  Google Scholar 

  • Conceição, E. O., T. Mantovano, R. Campos, T. F. Rangel, K. Martens, D. Bailly & J. Higuti, 2020. Mapping the observed and modelled intracontinental distribution of non-marine ostracods from South America. Hydrobiologia 847: 1663–1687.

    Article  Google Scholar 

  • Coronel, G., A. Menéndez & L. Chamorro, 2006. Fisiografía e hidrología de la Cuenca del Plata. El Cambio Climático en la Cuenca del Plata (Eds: V. Barros, R. Clarke, P, Silva Dias). CIMA‐CONICET: Buenos Aires: 81–92.

  • Dallaire, C. O., B. Lehner, R. Sayre & M. Thieme, 2019. A multidisciplinary framework to derive global river reach classifications at high spatial resolution. Environmental Research Letters 14: 024003.

    Article  Google Scholar 

  • Dallas, H. F. & V. Ross-Gillespie, 2015. Sublethal effects of temperature on freshwater organisms, with special reference to aquatic insects. Water SA 41: 712–726.

    Article  Google Scholar 

  • Davis, J., A. Pavlova, R. Thompson & P. Sunnucks, 2013. Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change. Global Change Biology 19: 1970–1984.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dijkstra, J. A., E. L. Westerman & L. G. Harris, 2011. The effects of climate change on species composition, succession and phenology: a case study. Global Change Biology 17: 2360–2369.

    Article  Google Scholar 

  • Diniz-Filho, J. A. D., P. Marco & B. A. Hawkins, 2010a. Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conservation and Diversity 3: 172–179.

    Google Scholar 

  • Diniz-Filho, J. A. F., R. D. Loyola, P. Raia, A. O. Mooers & L. M. Bini, 2013. Darwinian shortfalls in biodiversity conservation. Trends in Ecology & Evolution 28: 689–695.

    Article  Google Scholar 

  • Diniz-Filho, J. A. F., J. C. Nabout, L. M. Bini, R. D. Loyola, T. F. Rangel, D. Nogues-Bravo & M. B. Araújo, 2010b. Ensemble forecasting shifts in climatically suitable areas for Tropidacris cristata (Orthoptera: Acridoidea: Romaleidae). Insect Conservation and Diversity 3: 213–221.

    Google Scholar 

  • Diniz-Filho, J. A. F., L. M. Bini, T. F. Rangel, R. D. Loyola, C. Hof, D. Nogués-Bravo & M. B. Araujo, 2009. Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32: 897–906.

    Article  Google Scholar 

  • EROS - Earth Resources Observation and Science Center, 2018. HYDRO 1K Readme. Available on internet at https://www.usgs.gov/media/files/hydro-1k-readme. Accessed 10 Jan 2021.

  • Ferrier, S. & A. Guisan, 2006. Spatial modelling of biodiversity at the community level. Journal of Applied Ecology 43: 393–404.

    Article  Google Scholar 

  • Fick, S. E. & R. J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302–4315.

    Article  Google Scholar 

  • Ficke, A., C. A. Myrick & L. J. Hansen, 2007. Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries 17: 581–613.

    Article  Google Scholar 

  • GBIF.org (16th November 2017) GBIF Occurrence Download. https://doi.org/10.15468/dl.tv1bxg

  • Gilman, S. E., M. C. Urban, J. Tewksbury, G. W. Gilchrist & R. D. Holt, 2010. A framework for community interactions under climate change. Trends in Ecology & Evolution 25: 325–331.

    Article  Google Scholar 

  • Gower, J. C., 1971. A general coefficient of similarity and some of its properties. Biometrics 27: 857–871.

    Article  Google Scholar 

  • Guisan, A., R. Tingley, J. B. Baumgartner, I. Naujokaitis-Lewis, P. R. Sutcliffe, A. I. T. Tulloch, T. J. Regan, L. Brotons, E. McDonald-Madden, C. Mantyka-Pringle, T. G. Martin, J. R. Rhodes, R. Maggini, S. A. Setterfield, J. Elith, M. W. Schwartz, B. A. Wintle, O. Broennimann, M. Austin, S. Ferrier, M. R. Kearney, H. P. Possingham & Y. M. Buckley, 2013. Predicting species distribuitions for conservation decisions. Ecology Letters 16: 1424–1435.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hewitt, C., S. Mason & D. Walland, 2012. The global framework for climate services. Nature Climate Change 2: 831–832.

    Article  Google Scholar 

  • Higuti, J., S. A. J. Declerck, F. A. Lansac-Tôha, L. F. Velho & K. Martens, 2010. Variation in ostracod (Crustacea, Ostracoda) communities in the alluvial valley of the Upper Paraná River (Brazil) in relation to substrate. Hydrobiologia 644: 261–278.

    Article  CAS  Google Scholar 

  • Higuti, J., E. O. Conceição, R. Campos, V. G. Ferreira, J. Rosa, M. O. B. Pinto & K. Martens, 2017. Periphytic community structure of Ostracoda (Crustacea) in the river-floodplain system of the Upper Paraná River. Acta Limnologica Brasiliensia 29: e120.

    Article  Google Scholar 

  • Higuti, H., J. Rosa, V. G. Ferreira, N. M. Almeida, R. Campos, E. O. Conceição & K. Martens, 2020. Inter-Annual Variation of Ostracod (Crustacea) Communities in the Upper Paraná River Floodplain, Brazil. Oecologia Australis 24: 474–488.

    Article  Google Scholar 

  • Higuti, J., L. F. M. Velho, F. A. Lansac Tôha & K. Martens, 2007. Pleuston communities are buffered from regional flood pulses: the example of ostracods in the Paraná River floodplain, Brazil. Freshwater Biology 52: 1930–1943.

    Article  Google Scholar 

  • Hirzel, A. H., J. Hausser, D. Chessel & N. Perrin, 2002. Ecological-niche factor analysis: how to compute habitat suitability maps without absence data? Ecology 83: 2027–2036.

    Article  Google Scholar 

  • Hochkirch, A., A. Nieto, M. García Criado, M. Cálix, Y. Braud, F. M. Buzzetti, F. M. D. Chobanov, B. Odé, J. J. P. Asensio, L. Willemse, T. Zuna-Kratky, P. B. Vega, M. Bushell, M. E. Clemente, J. R. Correas, F. Dusoulier, S. Ferreira, P. Fontana, M. D. García, K. G. Heller, I. Ș Iorgu, S. Ivković, V. Kati, R. Kleukers, A. Krištín, M. Lemonnier-Darcemont, P. Lemos, B. Massa, C. Monnerat, K. P. Papapavlou, F. Prunier, T. Pushkar, C. Roesti, F. Rutschmann, D. Şirin, J. Skejo, G. Szövényi, E. Tzirkalli, V. Vedenina, J. B. Domenech, F. Barros, P. J. C. Tapia, B. Defaut, T. Fartmann, S. Gomboc, J. Gutiérrez-Rodríguez, J. Holuša, I. Illich, S. Karjalainen, P. Kočárek, O. Korsunovskaya, A. Liana, H. López, D. Morin, J. M. Olmo-Vidal, G. Puskás, V. Savitsky, T. Stalling & J. Tumbrinck, 2016. European Red List of Grasshoppers, Crickets and Bush-Crickets, Publications Office of the European Union, Luxembourg:

    Google Scholar 

  • Horne, D. J. & K. Martens, 1998. An assessment of the importance of resting eggs for the evolutionary success of non-marine Ostracoda (Crustacea). In: Evolutionary and ecological aspects of crustacean diapause. (Eds: L. Brendonck, L. De Meester & N. Hairston). Advances in Limnology 52: 549–561.

  • Hortal, J., F. Bello, J. A. F. Diniz-Filho, T. M. Lewinsohnet, J. M. Lobo & R. J. Ladle, 2015. Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution and Systematics 46: 523–549.

    Article  Google Scholar 

  • ICMBio, 2018. Livro Vermelho da Fauna Brasileira ameaçada de extinção. Instituto Chico Mendes de Conservação da Biodiversidade. Brasília, DF: Instituto Chico Mendes da Biodiversidade/Ministério do Meio Ambiente, 492 pp.

  • IPCC, 2021. Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (Eds: V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R & B. Zhou). Cambridge University Press. In Press.

  • International Union for Conservation of Nature (IUCN), 2012. IUCN Red List Categories and Criteria: Version 3.1 (IUCN Species Survival Commission, Gland, Switzerland.

  • Kline, R. B., 1998. Principles and Practice of Structural Equation Modeling, The Guilford Press, New York:

    Google Scholar 

  • Keppel, G., K. P. Van Niel, G. W. Wardell-Johnson, C. J. Yates, M. Byrne, L. Mucina, A. G. T. Schut, S. D. Hopper & S. E. Franklin, 2012. Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecology and Biogeography 21: 393–404.

    Article  Google Scholar 

  • Lansac-Tôha, F. M., L. M. Bini, J. Heino, B. R. Meira, B. T. Segovia, C. S. Pavanelli, C. C. Bonecker, C. P. Deus, E. Benedito, G. M. Alves, G. I. Manetta, J. D. Dias, L. C. G. Vieira, L. C. Rodrigues, M. C. Roberto, M. R. Brugler, M. J. Lemke, M. Tessler, R. DeSalle, R. P. Mormul, S. Amadio, S. F. Lolis, S. Jati, T. Siqueira, W. M. Silva, J. Higuti, F. A. Lansac-Tôha, K. Martens & L. F. M. Velho, 2021. Scale-dependent patterns of metacommunity structuring in aquatic organisms across floodplain systems. Journal of Biogeography 48: 872–885.

    Article  Google Scholar 

  • Liu, H., Z. Mi, L. I. Lin, Y. Wang, Z. Zhang, F. Zhang & X. Zhao, 2018. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences 115: 4051–4056.

    Article  CAS  Google Scholar 

  • Lourenço-de-Moraes, R., F. M. Lansac-Toha, T. F. Schwind, R. L. Arrieira, R. R. Rosa, L. C. Terribile, L. C. P. Lemes, T. F. Rangel, J. A. F. Diniz-Filho, R. P. Bastos & D. Bailly, 2019. Climate change will decrease the range size of snake species under negligible protection in the Brazilian Atlantic Forest hotspot. Scientific Reports 9: 8523.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marmion, M., M. Parviainen, M. Luoto, R. K. Heikkinen & W. Thuiller, 2009. Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions 15: 59–69.

    Article  Google Scholar 

  • Mantovano, T., L. P. Diniz, E. O. Conceição, J. Rosa, C. C. Bonecker, J. H. D. Ferreira, T. F. Rangel & F. A. Lansac-Tôha, 2021. Ecological niche models predict the potential distribution of the exotic rotifer Kellicottia bostoniensis (Rousselet, 1908) across the globe. Hydrobiologia 848: 299–309.

    Article  Google Scholar 

  • Martens, K. & F. Behen, 1994. A checklist of the non-marine ostracods (Crustacea, Ostracoda) from the inland waters of South America and adjacent islands. Travaux Scientifiques du Musée National d’Histoire Naturelle de Luxembourg, Luxembourg 22: 1–81.

  • Martens, K., N. L. Würdig & F. Behen, 1998. Maxillopoda. Non-Marine Ostracoda. In Young, P. S. (ed.), Catalogue of Crustacea of Brazil. Museu Nacional, Série Livros 6, Rio de Janeiro: 45–65.

  • Martens, K., I. Schön, C. Meisch & D. J. Horne, 2008. Global diversity of ostracods (Ostracoda, Crustacea) in freshwater. Hydrobiologia 595: 185–193.

    Article  Google Scholar 

  • Maiorano, L., A. Falcucci, N. E. Zimmermann, A. Psomas, J. Pottier, D. Baisero, C. Rondinini, A. Guisan & L. Boitani, 2011. The future of terrestrial mammals in the Mediterranean basin under climate change. Philosophical Transactions of the Royal Society b: Biological Sciences 366: 2681–2692.

    Article  Google Scholar 

  • Meisch, C., R. J. Smith & K. Martens, 2019. A subjective global checklist of the extant non-marine Ostracoda (Crustacea). European Journal of Taxonomy 492: 1–135.

    Google Scholar 

  • Mesquita-Joanes, F., A. J. Smith & F. A. Viehberg, 2012. The ecology of Ostracoda across levels of biological organisation from individual to ecosystem: a review of recent developments and future potential. In Ostracoda as proxies for quaternary climate change. Developments in Quaternary Science Series. (Eds: D.J. Horne, J.A. Holmes, J. Rodríguez-Lázaro & F. A. Viehberg. Elsevier, Amsterdam 17: 15–35.

    Google Scholar 

  • Morrone, J. J., 2015. Biogeographical regionalisation of the Andean region. Zootaxa 3936: 207–236.

    Article  PubMed  Google Scholar 

  • Naimi, B., 2017. Uncertainty Analysis for Species Distribution Models. R Package Version 1.1-18. https://cran.r-project.org/package=usdm. Accessed 10 Jan 2021.

  • Natalia, P., F. Silvia, S. Silvina & P. Miguel, 2020. Climate change in northern Patagonia: critical decrease in water resources. Theoretical and Applied Climatology 140: 807–822.

    Article  Google Scholar 

  • Navarro-Racines, C., J. Tarapues, P. Thornton, A. Jarvis & J. Ramirez-Villegas, 2020. High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Scientific Data 7: 7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nieto, A., S. P. M. Roberts, J. Kemp, P. Rasmont, M. Kuhlmann, M. G. Criado, J. C. Biesmeijer, P. Bogusch, H. H. Dathe, P. Rúa, T. Meulemeester, M. Dehon, A. Dewulf, F. J. Ortiz-Sánchez, P. Lhomme, A. Pauly, S. G. Potts, C. Praz, M. Quaranta, V. G. Radchenko, E. Scheuchl, J. Smit, J. Straka, M. Terzo, B. Tomozii, J. Window & D. Michez, 2014. European Red List of Bees, Publication Office of the European Union, Luxembourg:

    Google Scholar 

  • Numa, C., C. van Swaay, I. Wynhoff, M. Wiemers, V. Barrios, D. Allen, C. Sayer, M. L. Munguira, E. Balleto, D. Benyamini, S. Beshkov, S. Bonelli, R. Caruara, L. Dapporto, F. Franeta, P. Garcia-Pereira, E. Karaçetin, A. Katbeh-Bader, D. Maes, N. Micevski, R. Miller, E. Monteiro, R. Moulai, A. Nieto, L. Pamperis, G. Pe’er, A. Power, M. Šašić, K. Thompason, E. Tzirkalli, R. Veronik, M. Warren & H. Welch, 2016. The Status and Distribution of Mediterranean Butterflies, IUCN, Malaga:

    Book  Google Scholar 

  • Nunez, S., E. Arets, R. Alkemade, C. Verwer & R. Leemans, 2019. Assessing the impacts of climate change on biodiversity: is below 2° C enough? Climatic Change 154: 351–365.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs & H. Wagner, 2016. Vegan: Community Ecology Package. R Package Version 2.4-1. https://cran.r-project.org/package=vegan. Accessed 10 Jan 2021.

  • Overton, J. M. C., R. T. T. Stephens, J. R. Leathwick & A. Lehmann, 2002. Information pyramids for informed biodiversity conservation. Biodiversity and Conservation 11: 2093–2116.

    Article  Google Scholar 

  • Paruelo, J. M., A. Beltrán, E. Jobbágy, O. E. Sala & R. A. Golluscio, 1998. The climate of Patagonia: general patterns and controls on biotic processes. Ecología Austral 8: 85–101.

    Google Scholar 

  • Pearson, R. G. & T. P. Dawson, 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12: 361–371.

    Article  Google Scholar 

  • Peterson, A. T., M. Papes & J. Saberón, 2008. Rethinking receiver operating characteristic analysis applications in ecological niche modelling. Ecological Modelling 213: 63–72.

    Article  Google Scholar 

  • Peterson, A. T., J. Soberón, R. G, Pearson, R. P. Anderson, E. Martínez‐Meyer, M. Nakamura & M. B. Araújo, 2011. Ecological niches and geographic distributions. Monographs in Population Biology, 49. Princeton University Press, Princeton, New Jersey.

  • Petsch, D. K., L. G. S. Ribas, T. Montovano, M. M. Pulzatto, A. T. Alves, G. D. Pinha & S. M. Thomaz, 2021. Invasive potential of golden and zebra mussels in present and future climatic scenarios in the new world. Hydrobiologia 848: 2319–2330.

    Article  Google Scholar 

  • Phillips, J., G. McKinley, V. Bennington, H. Bootsma, D. Pilcher, R. Sterner & N. Urban, 2015. The potential for CO2-induced acidification in freshwater: a great lakes case study. Oceanography 25: 136–145.

    Article  Google Scholar 

  • Phillips, S. J., R. P. Anderson & R. E. Schapire, 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259.

    Article  Google Scholar 

  • QGIS Development Team, 2021. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project.

  • Quintero, I. & J. J. Wiens, 2013. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecology Letters 16: 1095–1103.

    Article  PubMed  Google Scholar 

  • R Development Core Team. (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. Available on internet at http://www.r-project.org/. Accessed 10 Jan 2021.

  • Ramos, L., L. B. Epele, M. G. Grech, L. M. Manzo, P. A. Macchi & G. C. Cuminsky, 2021. Modelling influences of local and climatic factors on the occurrence and abundance of non-marine ostracods (Crustacea: Ostracoda) across Patagonia (Argentina). Hydrobiologia 849: 229–244.

    Article  Google Scholar 

  • Rangel, T. F. & R. D. Loyola, 2012. Labeling ecological niche models. Natureza & Conservação 10: 119–126.

    Article  Google Scholar 

  • Raxworthy, C. J., E. Martinez-Mayer, N. Horning, R. A. Nussbaum, G. E. Scheider, M. A. Ortega-Huerta & A. T. Peterson, 2003. Predicting distributions of known and unknown reptiles. Nature 426: 837–841.

    Article  CAS  PubMed  Google Scholar 

  • Root, T. L., J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig & J. A. Pounds, 2003. Fingerprints of global warming on wild animals and plants. Nature 421: 57–60.

    Article  CAS  PubMed  Google Scholar 

  • Rosa, J., R. Campos, K. Martens & J. Higuti, 2020. Spatial variation of ostracod (Crustacea, Ostracoda) egg banks in temporary lakes of a tropical flood plain. Marine & Freshwater Research 72: 29–34.

    Google Scholar 

  • Rosa, J., K. Martens & J. Higuti, 2022. Dried aquatic macrophytes are floating egg banks and potential dispersal vectors of ostracods (Crustacea) from pleuston communities. Hydrobiologia. https://doi.org/10.1007/s10750-022-04818-8.

    Article  Google Scholar 

  • Rossi, V., D. Albini, G. Benassi & P. Menozzi, 2012. To rest in hydration: hatching phenology of resting eggs of Heterocypris incongruens (Crustacea: Ostracoda). Fundamental and Applied Limnology/Archiv für Hydrobiologie 181: 49–58.

    Article  Google Scholar 

  • Ruaro, R., E. O. Conceição, G. C. Silva, E. G. Cafofo, M. A. Angulo-Valencia, T. Mantovano, A. Pineda, A. C. M. Paula, B. F. Zanco, E. M. Caparro, G. A. Moresco, I. J. Oliveira, J. L. Antiqueira, J. Ernandes-Silva, J. V. F. Silva, J. R. P. Adelino, J. A. Santos, M. J. M. Ganassin, M. S. Iquematsu, G. O. Landgraf, P. Lemes, F. A. S. Cassemiro, B. F. Batista-Silva, J. A. F. Diniz-Filho, T. F. Rangel, A. A. Agostinho & D. Bailly, 2019. Climate change will decrease the range of a keystone fish species in La Plata River Basin, South America. Hydrobiologia 836: 1–19.

    Article  Google Scholar 

  • Selwood, K. E. & H. C. Zimmer, 2020. Refuges for biodiversity conservation: a review of the evidence. Biological Conservation 245: 108509.

    Article  Google Scholar 

  • Sheldon, K. S., S. Yang & J. J. Tewksbury, 2011. Climate change and community disassembly: impacts of warming on tropical and temperate montane community structure. Ecology Letters 14: 1191–1200.

    Article  PubMed  Google Scholar 

  • Simaika, J. P. & M. J. Samways, 2015. Predicted range shifts of dragonflies over a wide elevation gradient in the southern hemisphere. Applied Odonatology 34: 1133–1143.

    Google Scholar 

  • Smith, K. G., V. Barrios, W. R. T. Darwall & C. Numa, 2014. The Status and Distribution of Freshwater Biodiversity in the Eastern Mediterranean, IUCN, Cambridge, UK:

    Book  Google Scholar 

  • Sinha, E., A. Michalak & V. Balaji, 2017. Eutrophication will increase during the 21st century as a result of precipitation changes. Science 357: 405–408.

    Article  CAS  PubMed  Google Scholar 

  • Somero, G. N., 2009. The physiology of climate change: how potentials for acclimatization and genetic adaption will determine ‘winners’ and ‘losers.’ The Journal of Experimental Biology 213: 912–920.

    Article  Google Scholar 

  • Soberón, J., 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters 10: 1115–1123.

    Article  PubMed  Google Scholar 

  • Stenseth, N. C., A. Mysterud, G. Ottersen, J. W. Hurrell, K. S. Chan & M. Lima, 2002. Ecological effects of climate fluctuations. Science 297: 1292–1296.

    Article  CAS  PubMed  Google Scholar 

  • Stockwell, D. R. B. & D. Peters, 1999. The GARP modelling system: problems and solutions to automated spatial prediction. International Journal of Geographical Information Science 13: 143–158.

    Article  Google Scholar 

  • Sundar, S., H. Jani, F. O. Roque, J. P. Simaika, A. S. Melo, J. D. Tonkin, D. G. Nogueira & D. P. Silva, 2020. Conservation of freshwater macroinvertebrate biodiversity in tropical regions. Aquatic Conservation: Marine and Freshwater Ecosystems 30: 1238–1250

  • Terribile, L. C. & J. A. F. Diniz-Filho, 2010. How many studies are necessary to compare niche-based models for geographic distributions? Inductive reasoning may fail at the end. Brazilian Journal of Biology 70: 263–269.

    Article  CAS  Google Scholar 

  • THE DOCUMENT FOUNDATION. LibreOffice. 2021. LibreOffice. Available on internet at https://www.libreoffice.org/. Accessed 25 Jan 2021.

  • Thomaz, S. M., L. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13.

    Article  Google Scholar 

  • Thomas, C. D., C. Bulman & R. J. Wilson, 2008. Where within a geographical range do species survive best? A matter of scale. Insect Conservation and Diversity 1: 2–8.

    Article  Google Scholar 

  • Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. N. Erasmus, M. F. Siqueira, A. Grainger, L. Hanna, L. Hughes, B. Huntley, A. S. van Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. T. Peterson, O. L. Phillips & S. Williamns, 2004. Extinction risk from climate change. Nature 427: 145–148.

    Article  CAS  PubMed  Google Scholar 

  • Thuiller, W., S. Lavorel, M. B. Araùjo, M. T. Sykes & I. C. Prentice, 2005. Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences 102: 8245–8250.

    Article  CAS  Google Scholar 

  • Tucci, C. E. M., 2004. Visão dos Recursos Hídricos da Bacia do Prata. Visão Regional. Vol. 1.GEF/CIC/PNUMA/OEA. Buenos Ayres. 219p.

  • Watanabe, M., E. Ortega, I. Bergier & J. S. V. Silva, 2012. Nitrogen cycle and ecosystem services in the Brazilian La Plata Basin: anthropogenic influence and climate change. Brazilian Journal of Biology 72: 691–708.

    Article  CAS  Google Scholar 

  • Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York, https://ggplot2.tidyverse.org

  • Williams, J. W. & S. T. Jackson, 2007. Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment 5: 475.

    Article  Google Scholar 

  • Woodward, G., D. M. Perkins & L. E. Brown, 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical Transactions of the Royal Society of London 365: 2093–2106.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Centre of Research in Limnology, Ichthyology and Aquaculture (Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura-Nupélia), the Graduate Program on Ecology of Inland Water Ecosystems (Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais – PEA) of the State University of Maringá (Universidade Estadual de Maringá-UEM) for the logistic support and the Federal University of Technology – Paraná (UTFPR), Campus Campo Mourão for granting technical cooperation agreements with Nupélia (ACT 021/2019; ACT 018/2019). We would like to thank the "Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Estado do Paraná, Financiadora de Estudos e Projetos (FINEP)/CT-HIDRO" for financial support of several projects, including the programs "Sistema Nacional de Pesquisa em Biodiversidade (SISBIOTA), Programa de Pesquisa Ecológica de Longa Duração (PELD-PIAP, sitio 6), Programa de Apoio aos Núcleos de Excelência (PRONEX)". EOC, TM and RC would like to thank CAPES for granting their doctorate scholarships, DB thanks CNPq/PDS for the post-doctoral fellowship and JH thanks CNPq for the research productivity grant. The State University of Maringá (Maringá, Brazil) and the Royal Belgian Institute of Natural Sciences (Brussels, Belgium) have a bilateral Memorandum of Understanding regarding collaborative Scientific Research.

Author information

Authors and Affiliations

Authors

Contributions

KM, DB and JH conceptualized the study and assisted in the writing. Eliezer de Oliveira da Conceição collected the data, performed the analyses, and produced various drafts of the manuscript. Tatiane Mantovano, Ramiro de Campos, Edivando Vitor do Couto, José Hilário Delconte Ferreira and Thiago Fernando Rangel assisted the first author in the collection of data and provided background during many discussions.

Corresponding author

Correspondence to Koen Martens.

Ethics declarations

Ethical approval

The authors declare that they have no competing or conflicting financial or nonfinancial interests. All species used in this study are neither CITES-listed species nor endangered species according to Red Lists and as no additional sampling was done for this paper, no special sampling permissions were necessary for taking samples.

Additional information

Handling editor: Eric R. Larson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Koen Martens, Sidinei M. Thomaz, Diego Fontaneto & Luigi Naselli-Flores / Emerging Trends in Aquatic Ecology IV

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Conceição, E., Mantovano, T., de Campos, R. et al. Predicted changes in the distribution of Ostracoda (Crustacea) from river basins in the southern cone of South America, under two climate change scenarios. Hydrobiologia 850, 1443–1460 (2023). https://doi.org/10.1007/s10750-023-05144-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05144-3

Keywords

Navigation