Skip to main content

Advertisement

Log in

A novel multivariate ecological approach to modeling freshwater mussel habitats verified by ground truthing

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Our study incorporates high-resolution, multivariate ecological niche modeling (ENM) to test whether two putative state-threatened mussel species in East Texas (Fusconaia askewi and F. lananensis) are ecologically differentiated. We forecasted suitable habitat to identify any differences in the taxa’s habitat associations, using a total of 60 environmental layers comprising climate, soil, and hydrology in a multivariate framework. We found the two species were not ecologically different, consistent with other work (e.g., morphology and genetics) suggesting that they are synonymous. We synonymized the two to make an ENM that was then ground truthed by sampling 25 novel sites throughout East Texas. Our ENM significantly distinguished suitable from unsuitable habitat for these sites, identifying five new records. We compared model evaluation metrics using the original data versus the ground-truthed data, and we found that some metrics were more reliable than others. The verified ecological niche modeling approach that we present here can be applied in other studies in riverine environments and has particular relevance to conservation science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Data will be made available upon request.

Code availability

Code will be made available upon request.

References

  • Aiello-Lammens, M. E., R. A. Boria, A. Radosavljevic, B. Vilela & R. P. Anderson, 2015. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38: 541–545.

    Article  Google Scholar 

  • Allen, D. C. & C. C. Vaughn, 2009. Burrowing behavior of freshwater mussels in experimentally manipulated communities. Journal of the North American Benthological Society 28: 93–100.

    Article  Google Scholar 

  • Allen, D. C. & C. C. Vaughn, 2010. Complex hydraulic and substrate variables limit freshwater mussel species richness and abundance. Journal of the North American Benthological Society 29: 383–394.

    Article  Google Scholar 

  • Allouche, O., A. Tsoar & R. Kadmon, 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 1223–1232.

    Article  Google Scholar 

  • Arnold, W. R., D. A. Peterson & K. W. Farrish, 2016. A survey of unionid mussels inhabiting streams of the Sabine National Forest, Texas. Texas Journal of Science 65: 21–39.

    Google Scholar 

  • Atkinson, C. L., J. P. Julian & C. C. Vaughn, 2012. Scale-dependent longitudinal patterns in mussel communities. Freshwater Biology 57: 2272–2284.

    Article  Google Scholar 

  • Banta, J. A., I. M. Ehrenreich, S. Gerard, L. Chou, A. Wilczek, J. Schmitt, P. X. Kover & M. D. Purugganan, 2012. Climate envelope modelling reveals intraspecific relationships among flowering phenology, niche breadth and potential range size in Arabidopsis thaliana. Ecology Letters 15: 769–777.

    Article  PubMed  Google Scholar 

  • Bertram, E. P., J. S. Placyk, M. G. Williams & L. R. Williams, 2017. Verification of two cyprinid host fishes for the Texas pigtoe, Fusconaia askewi. Freshwater Mollusk Biology and Conservation 20: 65–70.

    Article  Google Scholar 

  • Böhm, M., N. I. Dewhurst-Richman, M. Seddon, S. E. H. Ledger, C. Albrecht, D. Allen, et al., 2021. The conservation status of the world’s freshwater molluscs. Hydrobiologia 848: 3231–3254.

    Article  Google Scholar 

  • Bolotov, I. N., A. A. Makhrov, M. Y. Gofarov, O. V. Aksenova, P. E. Aspholm, Y. V. Bespalaya, et al., 2018. Climate warming as a possible trigger of keystone mussel population decline in oligotrophic rivers at the continental scale. Scientific Reports 8: 1–9.

    Article  Google Scholar 

  • Brainwood, M. M., S. Burgin & M. Byrne, 2008. The role of geomorphology in substratum patch selection by freshwater mussels in the Hawkesbury-Nepan River (New South Wales) Australia. Aquatic Conservation Marine and Freshwater Ecosystems 18: 1285–1301.

    Article  Google Scholar 

  • Brooks, T. M., G. A. B. da Fonseca & A. S. L. Rodrigues, 2004. Protected areas and species. Conservation Biology 19: 616–618.

    Article  Google Scholar 

  • Burlakova, L. E., D. Campbell, A. Y. Karatayev & D. Barclay, 2012. Distribution, genetic analysis and conservation priorities for rare Texas freshwater molluscs in the genera Fusconaia and Pleurobema (Bivalvia: Unionidae). Aquatic Biosystems 8: 1–15.

    Article  Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Inference A Practical Information-Theoretic Approach, 2nd ed. Springer, New York:

    Google Scholar 

  • Campos, M. D. S., D. Peifer & P. D. Castro, 2016. The ShearStress importance on the spatial distribution pattern of the invader Limnoperna fortunei in the upper Parana River basin — an assessment based on the spatial distribution models. Biota Neotropica 16: e20140164.

    Article  Google Scholar 

  • Cangelosi, R. & A. Goriely, 2007. Component retention in principal component analysis with application to cDNA microarray data. Biology Direct 2: 2–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chisamera, G., E. V. Buzan, T. Sahlean, D. Murariu, S. Zupan & B. Krystufek, 2014. Bukovina blind mole rat Spalax graecus revisited: phylogenetics, morphology, taxonomy, habitat associations and conservation. Mammal Review 44: 19–29.

    Article  Google Scholar 

  • Choi, B., H. Kang & W. H. Lee, 2018. Baseflow contribution to streamflow and aquatic habitats using physical habitat simulations. Water 10: 1304.

    Article  Google Scholar 

  • Coker, R. E., 1914. Water-power development in relation to fishes and mussels of the Mississippi. Report of the U.S. Commissioner of Fisheries for 1913. Appendix 8: 1–28.

    Google Scholar 

  • Coyne, J. & A. Orr, 2004. Speciation, Sinauer Associates, Sunderland, MA:

    Google Scholar 

  • Cruz-Cárdenas, G., L. López-Mata, J. L. Villaseñor & E. Ortiz, 2014. Potential species distribution modeling and the use of principal component analysis as predictor variables. Revista Mexicana de Biodiversidad 85: 189–199.

    Article  Google Scholar 

  • De Marco, P. & C. C. Nóbrega, 2018. Evaluating collinearity effects on species distribution models: an approach based on virtual species simulation. PLoS ONE 13(9): e0202403.

    Article  CAS  Google Scholar 

  • De Queiroz, K., 2007. Species concepts and species delimitation. Systematic Biology 56: 879–886.

    Article  PubMed  Google Scholar 

  • Dokulil, M. T. & G. Schiel, 2000. The sediment-water interface as an ecotone: an example from an ox-bow lake of the River Danube. Internationale Vereinigung Für Theoretische Und Angewandte Limnologie Verhandlungen 27: 402–405.

    Google Scholar 

  • Dominguez-Dominguez, O., E. Martinez-Meyer, L. Zambrano & G. Perez-Ponce de Leon, 2006. Using ecological-niche modeling as a conservation tool for freshwater species: live-bearing fishes in central Mexico. Conservation Biology 20: 1730–1739.

    Article  PubMed  Google Scholar 

  • Drew, C. A., M. Eddy, T. J. Kwak, W. G. Cope & T. Augspurger, 2018. Hydrologic characteristics of freshwater mussel habitat: novel insights from modeled flows. Freshwater Science 37: 343–356.

    Article  Google Scholar 

  • Duan, Q., J. Schaake, V. Andréassian, S. Franks, G. Goteti, H. V. Gupta, Y. M. Gusev, F. Habets, A. Hall, L. Hay, T. Hogue, M. Huang, G. Leavesley, X. Liang, O. N. Nasonova, J. Noilhan, L. Oudin, S. Sorooshian, T. Wagener & E. F. Wood, 2006. Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops. Journal of Hydrology 320: 3–17.

    Article  Google Scholar 

  • Elith, J., C. Graham & the NCEAS species distribution modelling group, 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151.

  • Estrada-Pena, A., A. Estrada-Sanchez, D. Estrada-Sanchez & J. de la Fuente, 2013. Assessing the effects of variables and background selection on the capture of the tick climate niche. International Journal of Health Geographics 12: 43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer & K. E. Taylor, 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development 9: 1937–1958.

    Article  Google Scholar 

  • Feng, X., D. S. Park, Y. Liang, R. Pandey & M. Papeş, 2019. Collinearity in ecological niche modeling: Confusions and challenges. Ecology and Evolution 9: 10365–10376.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fly, E. K., T. J. Hilbish, D. S. Wethey & R. L. Rognstad, 2015. Physiology and Biogeography: The response of European mussels (Mytilus spp.) to climate change. American Malacological Bulletin 33: 136–149.

    Article  Google Scholar 

  • Ford, D. F., A. D. Walters, L. R. Williams, M. G. Williams & N. B. Ford, 2016. Mussel Assemblages in Streams of Different Sizes in the Neches River Basin of Texas. Southeastern Naturalist 15: 26–40.

    Article  Google Scholar 

  • Ford, N.B., L. Williams, M.G. Williams, J. Banta, J. Placyk & H. Hawley, 2017. Final Report for Texas Comptroller of Public Accounts: Endangered Species Research Projects for Freshwater Mussels, Region 2, East Texas.

  • Frankham, R., J.D. Ballou, K. Ralls, M.D.B. Eldridge, M.R. Dudash, C.B. Fenster, R.C. Lacy & P. Sunnucks, 2017. Is taxonomy appropriate? Delineating species for conservation purposes. In: Genetic Management of Fragmented Animal and Plant Populations, Croydon, UK: Oxford University Press.

  • Freebairn, D. M., G. H. Wockner, N. A. Hamilton & P. Rowland, 2009. Impact of soil conditions on hydrology and water quality for a brown clay in the north-eastern cereal zone of Australia. Australian Journal of Soil Research 47: 389–402.

    Article  Google Scholar 

  • Friedheim, S., 2016. Comparison of species identification methods. Mānoa Horizons 1: 74–86.

    Google Scholar 

  • Frontier, S., 1976. Etude de la decroisissance des valeurs propres dans une analyze en composantes principals: comparison avec le modele de baton brise. Journal of Experimental Marine Biology and Ecology 25: 67–75.

    Article  Google Scholar 

  • Gangloff, M. M. & J. W. Feminella, 2007. Stream channel geomorphology influences mussel abundance in southern Appalachian streams, U.S.A. Freshwater Biology 52: 64–74.

    Article  Google Scholar 

  • Graney, R, 1984. The influence of substrate pH diet and temperature upon cadmium accumulation in the asiatic clam (Corbicula fluminea) in laboratory artificial streams. Water Research 18: 833–842.

    Article  CAS  Google Scholar 

  • Golladay, S. W., P. Gagnon, M. Kearns, J. M. Battle & D. W. Hicks, 2004. Response of freshwater mussel assemblages (Bivalvia: Unionidae) to a record drought in the Gulf Coastal Plain of southwestern Georgia. Freshwater Science 23: 494–506.

    Google Scholar 

  • Goodding, D. D., M. G. Williams, D. F. Ford, L. R. Williams & N. B. Ford, 2019. Associations between substrate and hydraulic variables and the distributions of a sculptured and an unsculptured unionid mussel. Freshwater Science 38: 543–553.

    Article  Google Scholar 

  • Gow, J. L., C. L. Peichel & E. B. Taylor, 2007. Ecological selection against hybrids in natural populations of sympatric threespine sticklebacks. Journal of Evolutionary Biology 20: 2173–2180.

    Article  CAS  PubMed  Google Scholar 

  • Greaves, G. J., R. Mathieu & P. J. Seddon, 2006. Predictive modelling and ground validation of the spatial distribution of the New Zealand long-tailed bat (Chalinolobus tuberculatus). Biological Conservation 132: 211–221.

    Article  Google Scholar 

  • Green, R. H., 1980. Role of a Unionid clam population in the calcium budget of a small Arctic lake. Canadian Journal of Fisheries and Aquatic Science 37: 219–224.

    Article  Google Scholar 

  • Haag, W. R., 2012. North American Freshwater Mussels: Ecology, Natural History, and Conservation, Cambridge University Press, New York:

    Book  Google Scholar 

  • Hendry, A. P., P. Nosil & L. H. Rieseberg, 2007. The speed of ecological speciation. Functional Ecology 21: 455–464.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernandez, P. A., C. H. Graham, L. L. Master, & D. L. Albert, 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29: 773–785.

    Article  Google Scholar 

  • Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones & A. Jarvis, 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978.

    Article  Google Scholar 

  • Hill, R. A., M. H. Weber, G. Leibowitz, R. Olsen & D. J. Thornbrugh, 2016. The stream-catchment (StreamCat) dataset: a database of watershed metrics for the coterminous United States. Journal of the American Water Resources Association 52: 120–128.

    Article  Google Scholar 

  • Hornbach, D. J., V. J. Kurth & M. C. Hove, 2010. Variation in freshwater mussel shell sculpture and shape along a river gradient. The American Midland Naturalist 164: 22–36.

    Article  Google Scholar 

  • Hotelling, H., 1933. Analysis of a complex of statistical variables into principal components. Journal of Experimental Psychology 24: 417–441 & 493–520.

  • Howells, R.G., W.N. Raymond & H.D. Murray (Texas Parks and Wildlife Department), 1996. Freshwater Mussels of Texas. Texas Parks and Wildlife Press.

  • Huntley, B., Y. C. Collingham, R. E. Green, G. M. Hilton, C. Rahbek & S. Willis, 2006. Potential impacts of climatic change upon geographical distributions of birds. International Journal of Avian Science 148: 8–28.

    Google Scholar 

  • Jackson, D. A., 1993. Stopping rules in principal component analysis: a comparison of heuristical and statistical approaches. Ecology 74: 2204–2214.

    Article  Google Scholar 

  • Jimenez-Valverde, A., J. F. Gomez, J. M. Lobo, A. Baselga & J. Hortal, 2008. Challenging species distribution models: the case of Maculinea nausithous in the Iberian Peninsula. Annales Zoologici Fennici 45: 200–210.

    Article  Google Scholar 

  • Kearns, A. M., M. Restani, I. Szabo, A. Schroder-Nielsen, J. A. Kim, H. M. Richardson, J. M. Marzluff, R. C. Fleischer, A. Johnsen & K. E. Omland, 2018. Genomic evidence of speciation reversal in ravens. Nature Communications 9: 906.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • King, J. R. & D. A. Jackson, 1999. Variable selection in large environmental data sets using principal components analysis. Environmentrics 10: 67–77.

    Article  Google Scholar 

  • Landis, J. R. & G. G. Koch, 1977. The measurement of observer agreement for categorical data. Biometrics 33: 159–174.

    Article  CAS  PubMed  Google Scholar 

  • Latzka, A. W., J. T. Crawford, A. S. Koblings, Y. Caldeira, E. Hilts & M. J. Vander Zanden, 2015. Representing calcification in distribution models for aquatic invasive species: surrogates perform as well as CaCO3 saturation state. Hydrobiologia 746: 197–208.

    Article  CAS  Google Scholar 

  • Lechner, A. M., V. Doerr, R. M. B. Harris, E. Doerr & E. C. Lefroy, 2015. A framework for incorporating fine-scale dispersal behaviour into biodiversity conservation planning. Landscape and Urban Planning 141: 11–23.

    Article  Google Scholar 

  • Legendre, P., 1993. Spatial autocorrelation: trouble or new paradigm? Ecology 74: 1659–1673.

    Article  Google Scholar 

  • Levine, T. D., H. B. Hansen & G. W. Gerald, 2014. Effects of shell shape, size, and sculpture in burrowing and anchoring abilities in the freshwater mussel Potamilus alatus (Unionidae). Biological Journal of the Linnean Society 111: 136–144.

    Article  Google Scholar 

  • Lewis, J. B. & P. N. Riebel, 1984. The effect of substrate on burrowing in freshwater mussels (Unionidae). Canadian Journal of Zoology 62: 2023–2025.

    Article  Google Scholar 

  • Lipp, A. G., G. G. Roberts, A. C. Whittaker, C. J. B. Gowing & V. M. Fernandes, 2020. River Sediment Geochemistry as a Conservative Mixture of Source Regions: Observations and Predictions From the Cairngorms, UK. Journal of Geophysical Research: Earth Surface 125: e2020JF005700.

    CAS  Google Scholar 

  • Liu, C., M. White & G. Newell, 2013. Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography 40: 778–789.

    Article  Google Scholar 

  • Lopes-Lima, M., L. E. Burlakova, A. Y. Karatayev, K. Mehler, M. Seddon & R. Sousa, 2018. Conservation of freshwater bivalves at the global scale: diversity, threats and research needs. Hydrobiologia 810: 1–14.

    Article  Google Scholar 

  • Low, B. W., Y. Zeng, H. H. Tan & D. C. J. Yeo, 2021. Predictor complexity and feature selection affect Maxent model transferability: Evidence from global freshwater invasive species. Diversity and Distributions 27: 497–511.

    Article  Google Scholar 

  • MacArthur, R. H., 1957. On the relative abundance of bird species. Proceedings of the National Academy of the Sciences of the United States of America 43: 293–295.

    CAS  Google Scholar 

  • Matthews, T. J. & R. J. Whittaker, 2015. Review: on the species abundance distribution in applied ecology and biodiversity management. Journal of Applied Ecology 52: 443–454.

    Article  Google Scholar 

  • McCune, B. & J.B. Grace, 2002. Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, Oregon.

  • McKay, M.L., T. Bondelid, T. Dewald, J. Johnston, R. Moore & A. Rea, 2012. NHDPlus Version 2: User Guide.

  • Merow, C., M. J. Smith & J. A. Silander Jr., 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36: 1058–1069.

    Article  Google Scholar 

  • Muscarella, R., P. J. Galante, M. Soley-Guardia, R. A. Boria, J. M. Kass, M. Uriarte & R. P. Anderson, 2014. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution 5: 1198–1205.

    Article  Google Scholar 

  • Neel, J. K., 1963. Impact of reservoirs. In Frey, D. G. (ed), Limnology in North America University of Wisconsin Press, Madison: 575–593.

    Google Scholar 

  • Nerbonne, B. A. & B. Vondracek, 2001. Effects of local land use on physical habitat, benthic macroinvertebrates, and fish in the Whitewater River, Minnesota, USA. Environmental Management 28: 87–99.

    Article  CAS  PubMed  Google Scholar 

  • Newton, T. J., D. A. Woolnough & D. L. Strayer, 2008. Using landscape ecology to understand and manage freshwater mussel populations. Journal of the North American Benthological Society 27: 424–439.

    Article  Google Scholar 

  • NRCS (Natural Resources Conservation Service, United States Department of Agriculture), Soil Survey Staff, 2018. Soil Survey Geographic (SSURGO) Database. Available online at https://sdmdataaccess.sc.egov.usda.gov.

  • Pandolfo, T. J., T. J. Kwak & W. G. Cope, 2012. Thermal tolerances of freshwater mussels and their host fish: species interactions in a changing climate. Walkerana 15: 69–82.

    Google Scholar 

  • Pearson, K., 1901. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, Sixth Series 2: 559–572.

    Article  Google Scholar 

  • Pearson, R. G., C. J. Raxworthy, M. Nakamura & A. T. Peterson, 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34: 102–117.

    Article  Google Scholar 

  • Persiani, A. M. & O. Maggi, 2013. Species-abundance distribution patterns of soil fungi: contribution to the ecological understanding of their response to experimental fire in Mediterranean maquis (southern Italy). Mycologia 105: 260–276.

    Article  PubMed  Google Scholar 

  • Peterson, A. T., 2001. Predicting species’ geographic distributions based on ecological niche modeling. The Condor 103: 599–605.

    Article  Google Scholar 

  • Phillips, S.J., 2017. A Brief Tutorial on Maxent. Available from url: http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed on 8/12/2019.

  • Phillips, S. J. & M. Dudik, 2008. Modeling of species distributions with MaxEnt new extensions and a comprehensive evaluation. Ecography 31: 161–175.

    Article  Google Scholar 

  • Phillips, S. J., R. P. Anderson & R. E. Shapire, 2006. Maximum entropy modeling of species geographic distributions. Ecological Modeling 190: 231–259.

    Article  Google Scholar 

  • Pie, M. R., L. L. F. Campos, A. L. S. Meyer & A. Duran, 2017. The evolution of climatic niches in squamate reptiles. Proceedings of the Royal Society B 284: e20170268.

    Article  Google Scholar 

  • Pieri, A. M., K. Inoue, N. A. Johnson, C. H. Smith, J. L. Harris, C. Robertson, & C. R. Randklev, 2018. Molecular and morphometric analyses reveal cryptic diversity within freshwater mussels (Bivalvia: Unionidae) of the western Gulf coastal drainages of the USA. Biological Journal of the Linnean Society 124: 261–277.

  • Pigliucci, M., 2003. Species as family resemblance concepts: the (dis-)solution of the species problem? Bioessays 25: 596–602.

    Article  PubMed  Google Scholar 

  • Placyk, J. S., A. Laszlo, A. Broadbent, K.L. Hertweck, L.R. Williams, M. Williams & J. A. Banta, 2019. Final Report: RFP No. 207c for Endangered Species Research Projects for Freshwater Mussels, Region 2, East Texas: Extension for Pigtoe Genomic Research. Final Report - Texas Comptroller of Public Accounts, Endangered Species Research Program.

  • Pratt, C., 2017. Reevaluating the occurrence and phylogeny of the pigtoe unionid mussels Fusconaia askewi, Fusconaia lananensis, Fusconaia flava, and Pleurobema riddellii in Texas (MS thesis, University of Texas at Tyler; 96 pages). http://hdl.handle.net/10950/589.

  • Raxworthy, C. J., C. M. Ingram, N. Rabibisoa & R. G. Pearson, 2007. Applications of ecological Niche modeling for species delimitation: a review and empirical evaluation using day Geckos (Phelsuma) from Madagascar. Systematic Biology 56: 907–923. https://doi.org/10.1080/10635150701775111.

    Article  PubMed  Google Scholar 

  • R Core Team, 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Rebelo, H. & G. Jones, 2010. Ground validation of presence-only modelling with rare species: a case study on barbastelles Barbastella barbastellus (Chiroptera: Vespertilionidae). Journal of Applied Ecology 47: 410–420.

    Article  Google Scholar 

  • Regan, H. M., F. W. Davis, S. J. Andelman, A. Widyanata & M. Freese, 2007. Comprehensive criteria for biodiversity evaluation in conservation planning. Biodiversity and Conservation 16: 2715–2728.

    Article  Google Scholar 

  • Reid, S. M., A. Brumpton, S. Hogg & T. Morris, 2014. Comparison of two timed search methods for collecting freshwater mussels in Great Lakes coastal wetlands. Freshwater Mollusk Biology and Conservation 17: 16–23.

    Article  Google Scholar 

  • Rhoden, C. M., W. E. Peterman & C. A. Taylor, 2017. Maxent-directed field surveys identify new populations of narrowly endemic habitat specialists. PeerJ 5: e3632.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rieseberg, L. H. & L. Brouillet, 1994. Are many plant species paraphyletic? Taxonomy 43: 21–32.

    Article  Google Scholar 

  • Rojas, M., 1992. The species problem and conservation: what are we protecting? Conservation Biology 6: 170–178.

    Article  Google Scholar 

  • Roscoe, E. J. & S. Redeungs, 1964. The ecology of the freshwater pearl mussel Margaritifera margaritifera (L.). Sterkiana 16: 19–32.

    Google Scholar 

  • Rosenberry, D. O., M. A. Briggs, E. B. Voytek & J. W. Lane, 2016. Influence of groundwater on distribution of dwarf wedgemussels (Alasmidonta heterodon) in the upper reaches of the Delaware River, northeastern USA. Hydrologic Earth Systems Science 20: 4323–4339.

    Article  Google Scholar 

  • Rumbelow, S.M., 2018. Physiological Responses of the State-Listed Texas Pigtoe to Environmental Stress. (MS thesis, University of Texas at Tyler, 36 pages). http://hdl.handle.net/10950/1186

  • Ruxton, G. D., 2006. The unequal variance t-test is an underused alternative to Student’s t-test and the Mann-Whitney U test. Behavioral Ecology 17: 688–690.

    Article  Google Scholar 

  • Sawicz, K., T. Wagener, M. Sivapalan, P. Troch & G. Carrillo, 2011. Catchment classification: empirical analysis of hydrologic similarity based on catchment function in the Eastern USA. Hydrology and Earth System Sciences 15: 2895–2911.

    Article  Google Scholar 

  • Schluter, D., 2009. Evidence for ecological speciation and its alternative. Science 323: 737–741.

    Article  CAS  PubMed  Google Scholar 

  • Schoener, T. W., 1968. The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49: 704–726.

    Article  Google Scholar 

  • Shabani, F., L. Kumar & M. Ahamadi, 2018. Assessing accuracy methods of species distribution models: AUC, Specificity, Sensitivity and the True Skill Statistic. Global Journal of Human Social Science: B, Geography, Geo-Sciences, Environmental Science & Disaster Management 18: 1–13.

    Google Scholar 

  • Shipley, B., 2016. Cause and Correlation in Biology: A User’s Guide to Path Analysis, Structural Equations, and Casual Inference with R, 2nd ed. Cambridge University Press, Cambridge:

    Book  Google Scholar 

  • Shorthouse, C. & N. Arnell, 1999. The effects of climatic variability on spatial characteristics of European river flows. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere 24: 7–13.

    Article  Google Scholar 

  • Smith, D., 2001. Pennak’s Freshwater Invertebrates of the United States: Porifera to Crustacea, 4th ed. Wiley, New York:

    Google Scholar 

  • Smith, D. R., 2006. Survey design for detecting rare freshwater mussels. Journal of the North American Benthological Society 25: 701–711.

    Article  Google Scholar 

  • Spooner, D. E. & C. C. Vaughn, 2008. A trait-based approach to species’ roles in stream ecosystems: climate change, community structure, and material cycling. Oecologia 158: 307–317.

    Article  PubMed  Google Scholar 

  • Stearns, S. C., 1989. Trade-offs in life-history evolution. Functional Ecology 3: 259–268.

    Article  Google Scholar 

  • Stepanovic, S., A. Kosovac, O. Krstic, J. Jovic & I. Tosevski, 2016. Morphology versus DNA barcoding: two sides of the same coin. A case study of Ceutorhynchus erysimi and C. contractus identification. Insect Science 23: 638–648.

    Article  CAS  PubMed  Google Scholar 

  • Strayer, D. L., 1991. Projected distribution of the zebra mussel, Dreissena polymorpha, in North America. Canadian Journal of Fisheries and Aquatic Sciences 48: 1389–1395.

    Article  Google Scholar 

  • Strayer, D. L., 1999. Use of flow refuges by unionid mussels in rivers. Journal of the North American Benthological Society 18: 468–476.

    Article  Google Scholar 

  • Strayer, D.L. & D.R. Smith, 2003. A guide to sampling freshwater mussel populations. American Fisheries Society, Monograph 8, Bethesda, Maryland.

  • Strayer, D. L., S. K. Hamilton & H. M. Malcom, 2021. Long-term increases in shell thickness in Elliptio complanata (Bivalvia: Unionidae) in the freshwater tidal Hudson River. Freshwater Biology 66: 1375–1381.

    Article  CAS  Google Scholar 

  • Tarver, J. W., 1972. Occurrence, distribution and density of Rangia cuneata, in Lakes Pontchartrain and Maurepas, Louisiana. Technical Bulletin of the Louisiana Wildlife and Fisheries Commission 1: 8.

    Google Scholar 

  • Texas Register 35, 2010. Threatened and endangered nongame species. Chapter 65. Wildlife Subchapter G. 31 TAC §65.175. Adopted rules. January 8, 2010: 249‐251. Texas Secretary of State. https://texashistory.unt.edu/ark:/67531/metapth101166/m2/1/high_res_d/0108is.pdf [8 April 2019].

  • Thompson, J. D., S. Lavergne, L. Affre, M. Gaudeul & M. Debussche, 2005. Ecological differentiation of mediterranean endemic plants. Taxonomy 54: 967–976.

    Article  Google Scholar 

  • Troia, M. J., M. G. Williams & N. B. Ford, 2015. The process domains concept as a framework for fish and mussel habitat in a coastal plain river of southeastern North America. Ecological Engineering 75: 484–496.

    Article  Google Scholar 

  • U.S. Environmental Protection Agency (US EPA) & the US Geological Survey (USGS), 2005. National hydrography dataset plus. Horizon Systems Corporation. www.horizon-systems.com/NHDPlus

  • U.S. Fish and Wildlife Service, 2011. Frequently Asked Questions on the 12-month Finding for Five Central Texas Mussels. Obtained from: https://www.fws.gov/southwest/es/Documents/R2ES/5_central_Texas_mussels_FAQs_2011.pdf. Accessed March 25, 2018.

  • U.S. Fish and Wildlife Service, 2016. Federal status of the Texas freshwater mussels (Unionidae) listed by the State of Texas. Obtained from: https://www.fws.gov/southwest/es/Documents/R2ES/AUES_Mussels_DRAFT_table_20160915.pdf. Accessed March 25, 2018.

  • Vakily, J. M., 1992. Determination and comparison of bivalve growth, with emphasis on Thailand and other tropical areas. ICLARM Tech. Rep. (36): 125 p.

  • Valencia-Rodriguez, D., L. Jimenez-Segura, C. A. Rogeliz & J. L. Parra, 2021. Ecological niche modeling as an effective tool to predict the distribution of freshwater organisms: the case of the Sabalete Brycon henni (Eigenmann, 1913). PLoS ONE 16: e0247876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valentine, B. D. & D. H. Stansbery, 1971. An introduction to the naiades of the Lake Texoma region, Oklahoma, with notes on the Red River fauna (Mollusca: Unionidae). Sterkiana 42: 1–40.

    Google Scholar 

  • Vaughn, C., 2018. Ecosystem services provided by freshwater mussels. Hydrobiologia 810: 15–27.

    Article  Google Scholar 

  • Vaughn, C., S. J. Nichols & D. E. Spooner, 2008. Community and foodweb ecology of freshwater mussels. Journal of the North American Benthological Society 27: 409–423.

    Article  Google Scholar 

  • Veloz, S. D., 2009. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. Journal of Biogeography 36: 2290–2299.

    Article  Google Scholar 

  • Walters, A. D., D. Ford, E. T. Chong, M. G. Williams, N. B. Ford, L. R. Williams & J. A. Banta, 2017. High-resolution ecological niche modelling of threatened freshwater mussels in east Texas, USA. Aquatic Conservation of Marine and Freshwater Ecosystems 27: 1251–1260.

    Article  Google Scholar 

  • Warren, D. L., R. E. Glor & M. Turelli, 2010. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 33: 607–611.

    Google Scholar 

  • Warren, D. L. & S. N. Seifert, 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications 21: 335–342.

    Article  PubMed  Google Scholar 

  • Warren, D. L., A. N. Wright, S. N. Seifert & H. B. Shaffer, 2014. Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Diversity and Distributions 20: 334–343.

    Article  Google Scholar 

  • Watters, G., 1999. Freshwater mussels and water quality: a review of the effects of hydrologic and instream habitat alteration. Proceedings of the First Freshwater Mollusk Conservation Society Symposium. pp. 261–274.

  • Weber, T. C. & M. Schwartz, 2011. Maximum entropy habitat modeling of four endangered mussels in the Ohio River basin, USA. Journal of Conservation Planning 7: 13–26.

    Google Scholar 

  • Weiss, I. M., N. Tuross, L. Addadi & S. Weiner, 2002. Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. Journal of Experimental Zoology 293: 278–491.

    Article  CAS  Google Scholar 

  • Whitehead, P. G., A. J. Wade & D. Butterfield, 2009. Potential impacts of climate change on water quality and ecology in six UK rivers. Hydrology Research 40: 113–122.

    Article  CAS  Google Scholar 

  • Wiens, J. J., 2004a. Speciation and ecology revisited: Phylogenetic niche conservatism and the origin of species. Evolution 58: 193–197.

    Article  PubMed  Google Scholar 

  • Wiens, J. J., 2004b. What is speciation and how should we study it? American Naturalist 163: 914–923.

    Article  PubMed  Google Scholar 

  • Wiens, J. J., 2004c. The role of morphological data in phylogeny reconstruction. Systematic Biology 53: 653–661.

    Article  PubMed  Google Scholar 

  • Williams, J. D., A. E. Bogan, R. S. Butler, K. S. Cummings, J. T. Garner, J. L. Haris, N. A. Johnson & G. T. Watters, 2017. A revised list of the freshwater mussels (Mollusca: Bivalvia: Unionoida) of the United States and Canada. Freshwater Mollusk Biology and Conservation 20: 33–58.

    Article  Google Scholar 

  • Wu, A., X. Deng, H. He, X. Ren, Y. Jing, W. Xiang, et al., 2019. Responses of species abundance distribution patterns to spatial scaling in subtropical secondary forests. Ecology and Evolution 9: 5338–5347.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng, B. & A. Agresti, 2000. Summarizing the predictive power of a generalized linear model. Statistics in Medicine 19: 1771–1781.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Neil Ford, Samantha Rowe, and Emmanuel Gutierrez from UT-Tyler for their invaluable help with mussel surveys and Neil Ford for lending his specimen identification expertise. We would also like to thank Alyssa Blanton and Megan Seawright for their help with the GIS work. We appreciate the meaningful comments and critiques of this manuscript shared by Susan Geda at the Florida Fish and Wildlife Conservation Commission and Emily Chou from the Wildlife Conservation Society. This work was funded by RFP No. 207c from the Natural Resources division of the Texas Comptroller of Public Accounts.

Funding

This study was funded by the Comptroller of the State of Texas (RFP No. 207c for Endangered Species Research).

Author information

Authors and Affiliations

Authors

Contributions

AL performed field work, conducted data analyses, prepared figures and tables, and wrote the manuscript. JB was the Principal Investigator on the grant proposal that funded this work, and in this capacity, he led all aspects of the project and served as AL’s academic advisor. He wrote the proposal that funded this work, performed analyses, and wrote the manuscript and the final grant report. JP, LW, and MW were co-Principal Investigators on the grant proposal. JP contributed to writing the proposal. LW contributed to the study design and the statistical analyses.

Corresponding author

Correspondence to Joshua A. Banta.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest or competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors consent to publication.

Additional information

Handling Editor: Manuel Lopes-Lima

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 72 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laszlo, A.M., Placyk, J.S., Williams, L.R. et al. A novel multivariate ecological approach to modeling freshwater mussel habitats verified by ground truthing. Hydrobiologia 849, 3117–3133 (2022). https://doi.org/10.1007/s10750-022-04913-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04913-w

Keywords

Navigation