Skip to main content
Log in

Tropical macrophytes promote phytoplankton community shifts in lake mesocosms: relevance for lake restoration in warm climates

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Macrophytes can be crucial for maintaining clear water conditions in temperate shallow lakes. However, their restorative potential and role in regulating phytoplankton remains uncertain in tropical lakes. We investigated the effects of emergent (Ludwigia adscendens and Persicaria barbata) and submerged (Vallisneria spiralis) macrophytes on the phytoplankton community of a turbid tropical reservoir. Through two in situ mesocosm experiments (~ 1000 l capacity) lasting 4 weeks, we (1) determined the effects of macrophyte density on phytoplankton biomass and composition, and (2) compared these effects between emergent and submerged macrophytes. In Experiment 1, macrophyte treatments reduced phytoplankton biomass and increased water clarity in a density-dependent manner. Only the ‘high density’ treatment (300 g/m2 emergent and 650 g/m2 submerged macrophytes) induced a taxonomic and functional shift from an initial community dominated by turbid water-adapted filamentous cyanobacteria to one dominated by clear water-adapted green algae and cryptophytes. In Experiment 2, emergent and submerged macrophytes reduced phytoplankton biomass and distinctly altered taxonomic and functional composition, with submerged macrophytes inhibiting Microcystis and stimulating cryptophyte taxa. Our results indicate that macrophytes can induce substantial phytoplankton community shifts in turbid tropical lakes, demonstrating the potential to assist in the reversal from turbid to clear water states during restoration efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Aguilera, A., E. B. Gómez, J. Kaštovský, R. O. Echenique & G. L. Salerno, 2018. The polyphasic analysis of two native Raphidiopsis isolates supports the unification of the genera Raphidiopsis and Cylindrospermopsis (Nostocales, Cyanobacteria). Phycologia 57: 130–146.

    Article  CAS  Google Scholar 

  • APHA, 1985. WPCF, 1992 Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC.

    Google Scholar 

  • Bachmann, R. W., C. A. Horsburgh, M. V. Hoyer, L. K. Mataraza & D. E. Canfield, 2002. Relations between trophic state indicators and plant biomass in Florida lakes. Hydrobiologia 470: 219–234.

    Article  Google Scholar 

  • Barko, J. W. & W. F. James, 1998. Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, and resuspension. In Jeppesen, E., Ma. Søndergaard, Mo. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies (Vol. 131, pp. 197–214). Springer Verlag, New York.

    Chapter  Google Scholar 

  • Beklioglu, M., M. Meerhoff, M. Søndergaard & E. Jeppesen, 2010. Eutrophication and restoration of shallow lakes from a cold temperate to a warm Mediterranean and a (sub) tropical climate. In Ansari, A. A., S. Singh Gill, G. R. Lanza & W. Rast (eds), Eutrophication: Causes, consequences and control. Springer Netherlands: 91–108.

    Chapter  Google Scholar 

  • Bellinger, E. G. & D. C. Sigee, 2015. Freshwater algae: identification, enumeration and use as bioindicators. John Wiley & Sons.

    Book  Google Scholar 

  • Blindow, I., A. Hargeby, S. Hilt, 2013. Facilitation of clear-water conditions in shallow lakes by macrophytes: differences between charophyte and angiosperm dominance. Hydrobiologia 737: 99–110.

    Article  CAS  Google Scholar 

  • Burkholder, J. M. & R. G. Wetzel, 1990. Epiphytic alkaline phosphatase on natural and artificial plants in an oligotrophic lake: Re‐evaluation of the role of macrophytes as a phosphorus source for epiphytes. Limnology and Oceanography 35: 736–747.

    Article  CAS  Google Scholar 

  • Chen, C. C., J. E. Petersen & W. M. Kemp, 1997. Spatial and temporal scaling of periphyton growth on walls of estuarine mesocosms. Marine Ecology Progress Series 155: 1–15.

    Article  Google Scholar 

  • Chong, K.Y., H.T.W. Tan, & R. T. Corlett, 2009. A checklist of the total vascular plant flora of Singapore: native, naturalised and cultivated species. Raffles Museum of Biodiversity Research, Singapore.

    Google Scholar 

  • Codd, G. A., 2000. Cyanobacterial toxins, the perception of water quality, and the prioritisation of eutrophication control. Ecological Engineering 16: 51–60.

    Article  Google Scholar 

  • Dandelot, S., C. Robles, N. Pech, A. Cazaubon & R. Verlaque, 2008. Allelopathic potential of two invasive alien Ludwigia spp. Aquatic Botany 88: 311–316.

    Article  Google Scholar 

  • de Tezanos Pinto, P. & I. O’Farrell, 2014. Regime shifts between free-floating plants and phytoplankton: a review. Hydrobiologia 740: 13–24.

    Article  CAS  Google Scholar 

  • Dokulil, M. T. & K. Teubner, 2000. Cyanobacterial dominance in lakes. Hydrobiologia 438: 1–12.

    Article  CAS  Google Scholar 

  • Dolman, A. M., J. Rücker, F. R. Pick, J. Fastner, T. Rohrlack, U. Mischke & C. Wiedner, 2012. Cyanobacteria and Cyanotoxins: The Influence of Nitrogen versus Phosphorus. PLoS ONE 7: e38757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • dos Santos, T. R., C. Ferragut & C. E. de Mattos Bicudo, 2013. Does macrophyte architecture influence periphyton? Relationships among Utricularia foliosa, periphyton assemblage structure and its nutrient (C, N, P) status. Hydrobiologia 714: 71–83.

    Article  CAS  Google Scholar 

  • Ferriol, C., M. R. Miracle, & E. Vicente, 2017. Effects of nutrient addition, recovery thereafter and the role of macrophytes in nutrient dynamics of a Mediterranean shallow lake: a mesocosm experiment. Marine and Freshwater Research 68: 506–518.

    Article  CAS  Google Scholar 

  • Finkler Ferreira, T., C. R. F. Junior & D. da Motta Marques, 2008. Efeito da liberação de nutrientes por plantas aquáticas sobre a dinâmica de estados alternativos da comunidade fitoplanctônica em um lago raso subtropical. Revista Brasileira de Recursos Hídricos 13: 151–160.

    Article  Google Scholar 

  • Finkler Ferreira, T., L. O. Crossetti, D. M. L. M. Marques, L. Cardoso, C. R. Fragoso Jr & E. H. van Nes, 2018. The structuring role of submerged macrophytes in a large subtropical shallow lake: Clear effects on water chemistry and phytoplankton structure community along a vegetated-pelagic gradient. Limnologica 69: 142–154.

    Article  CAS  Google Scholar 

  • Fonseca, B. M. & C. E. D. M. Bicudo, 2010. How important can the presence/absence of macrophytes be in determining phytoplankton strategies in two tropical shallow reservoirs with different trophic status? Journal of Plankton Research 32: 31–46.

    Article  CAS  Google Scholar 

  • Gao, Y., B. Liu, J. Wang, F. He, W. Liang, D. Xu, L. Zhang & Z. Wu, 2011. Allelopathic effects of phenolic compounds released by Vallisneria spiralis on Microcystis aeruginosa. Journal of Lake Sciences 23: 761–766.

    Article  CAS  Google Scholar 

  • Gebrehiwot, M., D. Kifle & L. Triest, 2017. Emergent macrophytes support zooplankton in a shallow tropical lake: a basis for wetland conservation. Environmental Management 60: 1127–1138.

    Article  PubMed  Google Scholar 

  • Goulder, R., 1969. Interactions between the rates of production of a freshwater macrophyte and phytoplankton in a pond. Oikos 300–309.

    Article  Google Scholar 

  • Granéli, W. & D. Solander, 1988. Influence of aquatic macrophytes on phosphorus cycling in lakes. Hydrobiologia 170: 245–266.

    Article  Google Scholar 

  • Gross, E. M., S. Hilt, P. Lombardo & G. Mulderij, 2007. Searching for allelopathic effects of submerged macrophytes on phytoplankton—state of the art and open questions. Shallow Lakes in a Changing World 77–88.

  • Hargeby, A., G. Andersson, I. Blindow & S. Johansson, 1994. Trophic web structure in a shallow eutrophic lake during a dominance shift from phytoplankton to submerged macrophytes. Hydrobiologia 279/280: 83–90.

    Article  Google Scholar 

  • Havens, K.E., 2008. Cyanobacteria blooms: effects on aquatic ecosystems. Advances in Experimental Medicine and Biology 619: 733–747.

    Article  PubMed  Google Scholar 

  • Hilt, S., E. M. Gross, M. Hupfer, H. Morscheid, J. Mählmann, A. Melzer, J. Poltz, S. Sandrock, E.-M. Scharf & S. Schneider, 2006. Restoration of submerged vegetation in shallow eutrophic lakes–A guideline and state of the art in Germany. Limnologica 36: 155–171.

    Article  CAS  Google Scholar 

  • Horppila, J. & L. Nurminen, 2003. Effect of submerged macrophytes on sediment resuspension and internal loading in Lake Hiidenvesi (southern Finland). Water Research 37: 4468–4474.

    Article  CAS  PubMed  Google Scholar 

  • ISO 10260, 1992. Water quality—measurement of biochemical parameters—spectrometric determination of the chlorophyll—a concentration. International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  • Jeppesen, E., M. Søndergaard, J. P. Jensen, K. E. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. T. Dokulil & B. Foy, 2005a. Lake responses to reduced nutrient loading–an analysis of contemporary long‐term data from 35 case studies. Freshwater Biology 50: 1747–1771.

    Article  CAS  Google Scholar 

  • Jeppesen, E., M. Søndergaard, N. Mazzeo, M. Meerhoff, C. C. Branco, V. Huszar & F. Scasso, 2005b. Lake restoration and biomanipulation in temperate lakes: relevance for subtropical and tropical lakes. Restoration and Management of Tropical Eutrophic Lakes 61: 341–359.

    Google Scholar 

  • Jeppesen, E., M. Søndergaard, M. Meerhoff, T. L. Lauridsen & J. P. Jensen, 2007. Shallow lake restoration by nutrient loading reduction – some recent findings and challenges ahead. Hydrobiologia 584: 239–252.

    Article  CAS  Google Scholar 

  • Jeppesen, E., M. Søndergaard, T. L. Lauridsen, T. A. Davidson, Z. Liu, N. Mazzeo, C. Trochine, K. Özkan, H. S. Jensen & D. Trolle, 2012. Biomanipulation as a restoration tool to combat eutrophication: recent advances and future challenges Advances in Ecological Research. vol 47. Elsevier, 411–488.

    Google Scholar 

  • Lewis, W. M., Jr., 2000. Basis for the protection and management of tropical lakes. Lakes & Reservoirs: Research & Management 5: 35–48.

    Article  Google Scholar 

  • Lewis, W. M., Jr., 2002. Causes for the high frequency of nitrogen limitation in tropical lakes. Verhandlungen der internationalen Vereinigung für theoretische und angewandte Limnologie 28: 210–213.

    Google Scholar 

  • Liu, Z., J. Hu, P. Zhong, X. Zhang, J. Ning, S. E. Larsen, D. Chen, Y. Gao, H. He & E. Jeppesen, 2018. Successful restoration of a tropical shallow eutrophic lake: Strong bottom-up but weak top-down effects recorded. Water Research 146: 88–97.

    Article  CAS  PubMed  Google Scholar 

  • Madsen, J. D., P. A. Chambers, W. F. James, E. W. Koch & D. F. Westlake, 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444: 71–84.

    Article  Google Scholar 

  • May, L., J. Olszewska, I. Gunn, S. Meis & B. Spears, Eutrophication and restoration in temperate lakes. In: IOP Conference Series: Earth and Environmental Science, 2020. vol 535. IOP Publishing, p 012001.

    Google Scholar 

  • Meerhoff, M., N. Mazzeo, B. Moss & L. Rodríguez-Gallego, 2003. The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquatic Ecology 37: 377–391.

    Article  Google Scholar 

  • Mitrovic, S. & R. Croome, 2009. A guide to the sampling and identification of the phytoplankton of reservoirs in Singapore. Report submitted to PUB, Technology and Water Quality Office for Raffles Museum of Biodiversity Research.

  • Mowe, M. A. D., Y. Song, D. Z. H. Sim, J. Lu, S. M. Mitrovic, H. T. W. Tan & D. C. J. Yeo, 2019. Comparative study of six emergent macrophyte species for controlling cyanobacterial blooms in a tropical reservoir. Ecological Engineering 129: 11–21.

    Article  Google Scholar 

  • Nicholls, K. H., L. Heintsch & E. C. Carney, 2004. A multivariate approach for evaluating progress towards phytoplankton community restoration targets: Examples from eutrophication and acidification case histories. Aquatic Ecosystem Health & Management 7: 15–30.

    Article  Google Scholar 

  • Ogdahl, M. E. & A. D. Steinman, 2014. Factors influencing macrophyte growth and recovery following shoreline restoration activity. Aquatic Botany 120: 363–370.

    Article  Google Scholar 

  • Ogura, A., K. Takeda & T. Nakatsubo, 2009. Periphyton contribution to nitrogen dynamics in the discharge from a wastewater treatment plant. River Research and Applications 25: 229–235.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson & P. Solymos, 2019. vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan.

  • Olenina, I., S. Hajdu, L. Edler, A. Andersson, N. Wasmund, S. Busch, J. Göbel, S. Gromisz, S. Huseby & M. Huttunen, 2006. Biovolumes and size-classes of phytoplankton in the Baltic Sea. HELCOM, Baltic Sea Environment Proceedings 106: 1–144.

    Google Scholar 

  • Ozimek, T., R. D. Gulati & E. van Donk, 1990. Can macrophytes be useful in biomanipulation of lakes? The Lake Zwemlust example. Hydrobiologia 200: 399–407.

    Article  Google Scholar 

  • Özkan, K., E Jeppesen, L. S. Johansson & M. Beklioglu, 2010. The response of periphyton and submerged macrophytes to nitrogen and phosphorus loading in shallow warm lakes: a mesocosm experiment. Freshwater Biology 55: 463-475.

    Article  CAS  Google Scholar 

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Article  Google Scholar 

  • Paerl, H. W., R. S. Fulton, P. H. Moisander & J. Dyble, 2001. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. The Scientific World 1: 76–113.

    Article  CAS  Google Scholar 

  • Pinheiro, J., D. Bates, S. DebRoy & D. Sarkar, 2018. R Core Team (2018). nlme: Linear and nonlinear mixed effects models. R package version 3.1-137.

  • Perrow, M. R., M.-L. Meijer, P. Dawidowicz, H. Coops, 1997. Biomanipulation in shallow lakes: state of the art. Hydrobiologia, 342: 355–365

    Article  Google Scholar 

  • Qiu, D. W., Z. B. Wu, B. Y. Liu, J. Q. Deng, G. P. Fu & F. He, 2001. The restoration of aquatic macrophytes for improving water quality in a hypertrophic shallow lake in Hubei Province, China. Ecological Engineering 18: 147–156.

    Article  Google Scholar 

  • R Development Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  • Reddy, K. R. & E. M. D'angelo, 1997. Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands. Water Science and Technology 35: 1–10.

    Article  CAS  Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–417.

    Article  Google Scholar 

  • Rooney, N. & J. Kalff, 2003. Submerged macrophyte-bed effects on water-column phosphorus, chlorophyll a, and bacterial production. Ecosystems 6: 797–807.

    Article  CAS  Google Scholar 

  • Rose, N. L., H. Yang, S. D. Turner & G. L. Simpson, 2012. An assessment of the mechanisms for the transfer of lead and mercury from atmospherically contaminated organic soils to lake sediments with particular reference to Scotland, UK. Geochimica et Cosmochimica Acta 82: 113-135.

    Article  CAS  Google Scholar 

  • Schallenberg, M., & C. W. Burns, 2004. Effects of sediment resuspension on phytoplankton production: teasing apart the influences of light, nutrients and algal entrainment. Freshwater Biology 49: 143-159.

    Article  CAS  Google Scholar 

  • Scheffer, M. & E. Jeppesen, 1998. Alternative stable states In Jeppesen, E., Ma. Søndergaard, Mo. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies, Vol. 131. Springer Verlag, New York: 197–214.

    Google Scholar 

  • Scheffer, M. & E. Jeppesen, 2007. Regime shifts in shallow lakes. Ecosystems 10:1–3.

    Article  Google Scholar 

  • Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.

    Article  CAS  Google Scholar 

  • Scheffer, M., S. Rinaldi, A. Gragnani, L. R. Mur & E. H. van Nes, 1997. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78: 272–282.

    Article  Google Scholar 

  • Scheffer, M., S. Carpenter, J. A. Foley, C. Folke & B. Walker, 2001. Catastrophic shifts in ecosystems. Nature 413: 591.

    Article  CAS  PubMed  Google Scholar 

  • See, Y. S. M., 2018. Effects of Macrophytes on Zooplankton and Phytoplankton Trophic Interactions in a Tropical Reservoir. Unpublished honours thesis. National University of Singapore.

  • Soares, M., M. Vale & V. Vasconcelos, 2011. Effects of nitrate reduction on the eutrophication of an urban man‐ made lake (Palácio de Cristal, Porto, Portugal). Environmental Technology 32: 1009–1015.

    Article  CAS  Google Scholar 

  • Sommer, U., 1988. Some size relationships in phytoflagellate motility. Hydrobiologia 161: 125–131.

    Article  Google Scholar 

  • Søndergaard, M. & B. Moss, 1998. Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes. In Jeppesen, E., Ma. Søndergaard, Mo. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies, Vol. 131. Springer Verlag, New York: 197–214.

    Google Scholar 

  • Song, Y., J. H. Liew, D. Z. H. Sim, M. A. D. Mowe, S. M. Mitrovic, H. T. W. Tan & D. C. J. Yeo, 2019a. Effects of macrophytes on lake‐water quality across latitudes: a meta‐analysis. Oikos 128: 468–481.

    Article  CAS  Google Scholar 

  • Song, Y., M. A. D. Mowe, S. M. Mitrovic, H. T. W. Tan & D. C. J. Yeo, 2019b. An ex situ mesocosm study of emergent macrophyte effects on phytoplankton communities. Fundamental and Applied Limnology/Archiv für Hydrobiologie 192: 225–235.

    Article  Google Scholar 

  • Tang, X., X. Zhang, T. Cao, L. Ni, & P. Xie, 2018. Reconstructing clear water state and submersed vegetation on behalf of repeated flocculation with modified soil in an in situ mesocosm experiment in Lake Taihu. Science of The Total Environment 625: 1433–1445.

    Article  CAS  Google Scholar 

  • Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnology and Oceanography 29: 472–486.

    Article  Google Scholar 

  • Tolotti, M. & H. Thies, 2002. Phytoplankton community and limnochemistry of Piburger See (Tyrol, Austria) 28 years after lake restoration. Journal of Limnology 61: 77–88.

    Article  Google Scholar 

  • van den Berg, M. S., H. Coops, M.-L. Meijer, M. Scheffer & J. Simons, 1998. Clear water associated with a dense Chara vegetation in the shallow and turbid Lake Veluwemeer, The Netherlands. In Jeppesen, E., Ma. Søndergaard, Mo. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies, Vol. 131. Springer Verlag, New York: 197–214.

    Google Scholar 

  • van Donk, E. & W. J. van de Bund, 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquatic Botany 72: 261–274.

    Article  Google Scholar 

  • van Nes, E. H., M. Scheffer, M. S. van den Berg & H. Coops, 2003. Charisma: a spatial explicit simulation model of submerged macrophytes. Ecological Modelling 159: 103–116.

    Article  Google Scholar 

  • Vanderstukken, M., N. Mazzeo, W. Van Colen, S. A. J. Declerck & K. Muylaert, 2011. Biological control of phytoplankton by the subtropical submerged macrophytes Egeria densa and Potamogeton illinoensis: a mesocosm study. Freshwater Biology 56: 1837–1849.

    Article  CAS  Google Scholar 

  • Wang, G. X., L. M. Zhang, H. Chua, X. D. Li, M. F. Xia & P. M. Pu, 2009. A mosaic community of macrophytes for the ecological remediation of eutrophic shallow lakes. Ecological Engineering 35: 582–590.

    Article  Google Scholar 

  • Weisner, S. E. B., P. G. Eriksson, W. Granéli & L. Leonardson, 1994. Influence of macrophytes on nitrate. Ambio 23: 363–366.

    Google Scholar 

  • Wetzel, R. G., 2001. Limnology, 3rd ed. Academic Press, San Diego: 1006 pp.

    Google Scholar 

  • Wigand, C., J. Wehr, K. Limburg, B. Gorham, S. Longergan & S. Findlay, 2000. Effect of Vallisneria americana (L.) on community structure and ecosystem function in lake mesocosms. Hydrobiologia 418: 137–146.

    Article  Google Scholar 

  • Wood, S., 2019. Package ‘mgcv’: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation 2019.

  • Xian, Q., H. Chen, H. Liu, H. Zou & D. Yin, 2006. Isolation and Identification of Antialgal Compounds from the Leaves of Vallisneria spiralis L. by Activity-Guided Fractionation (5 pp). Environmental Science and Pollution Research 13: 233–237.

    Article  CAS  PubMed  Google Scholar 

  • Yeh N., P. Yeh & Y. H. Chang, 2015. Artificial floating islands for environmental improvement. Renewable Sustainable Energy Reviews 47: 616–622.

    Article  CAS  Google Scholar 

  • Zang C., S. Huang, M. Wu, S. Du, M. Scholz, F. Gao, C. Lin, Y. Guo & Y. Dong, 2011. Comparison of relationships between pH, dissolved oxygen and chlorophyll a for aquaculture and non-aquaculture waters. Water, Air, & Soil Pollution 219: 157–174.

    Article  CAS  Google Scholar 

  • Zeng, L., F. He, Z. Dai, D. Xu, B. Liu, Q. Zhou & Z. Wu, 2017a. Effect of submerged macrophyte restoration on improving aquatic ecosystem in a subtropical, shallow lake. Ecological Engineering 106: 578–587.

    Article  Google Scholar 

  • Zeng, L., F. He, Y. Zhang, B. Liu, Z. Dai, Q. Zhou & Z. Wu, 2017b. How Submerged Macrophyte Restoration Promotes a Shift of Phytoplankton Community in a Shallow Subtropical Lake. Polish Journal of Environmental Studies 26: 1363–1373.

    Article  Google Scholar 

  • Zhang, X., W. Zhen, H. S. Jensen, K. Reitzel, E. Jeppesen, & Z. Liu, 2021. The combined effects of macrophytes (Vallisneria denseserrulata) and a lanthanum-modified bentonite on water quality of shallow eutrophic lakes: A mesocosm study. Environmental Pollution, 277: 116720.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, J. G. & Z. H. Chen, 2016. Effect of two macrophyte species on phytoplankton growth and water quality in a eutrophic pond. Aquatic Ecosystem Health & Management, 19: 393–400.

    Article  Google Scholar 

  • Zhu, M., G. Zhu, L. Nurminen, T. Wu, J. Deng, Y. Zhang, B. Qin, A-M. Ven, 2015. The influence of macrophytes on sediment resuspension and the effect of associated nutrients in a shallow and large lake (Lake Taihu, China). PLoS ONE, 10: e0127915.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the following sources of support for this study: a research grant from PUB, Singapore’s National Water Agency (National University of Singapore, Grant No. R-154-000-689-490); and National University of Singapore President’s Graduate Fellowship to D. Z. H. Sim.

Funding

This work was supported by a research grant from PUB, Singapore’s National Water Agency (National University of Singapore, Grant No. R-154-000-689-490).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by DZHS, MADM and SY. DZHS led the writing of the manuscript and all authors contributed critically to previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Darren C. J. Yeo.

Ethics declarations

Conflict of interest

We declare no competing financial interests.

Additional information

Handling editor: Zhengwen Liu

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sim, D.Z.H., Mowe, M.A.D., Song, Y. et al. Tropical macrophytes promote phytoplankton community shifts in lake mesocosms: relevance for lake restoration in warm climates. Hydrobiologia 848, 4861–4884 (2021). https://doi.org/10.1007/s10750-021-04679-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04679-7

Keywords

Navigation