Skip to main content
Log in

Non-native poeciliids in hot water: the role of thermal springs in facilitating invasion of tropical species

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

A Correction to this article was published on 03 September 2021

This article has been updated

Abstract

Livebearers in the family Poeciliidae are some of the most widely introduced fishes. Native poeciliid translocations within the U.S. are mostly due to deliberate stocking for mosquito control. Introductions of exotic poeciliids, those not native to the U.S., are more likely to be due to release from aquaria or escape from farms. Many of these non-natives originate from warm climate regions, contrasting with the relatively cold climates in the U.S. Thus, thermal springs may increase the possible range of these species. Our primary objective was to examine the importance of climate and thermal springs in affecting the distribution of translocated and non-native poeciliids in the U.S. This objective was addressed using a national database of poeciliid introductions. Records were dominated by a handful of states and most introductions led to established populations. While translocated mosquitofish were found across many states and climates, non-natives were found almost exclusively in warm climate states and territories (e.g., Florida, Hawaii, Puerto Rico), especially where air temperatures remained above freezing. Outside warm climate states, 46% of established non-native populations were located at thermal spring sources. These results indicate that thermal springs extend the distribution of non-natives, but were relatively unimportant for translocated poeciliids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  • Beck, H. E., N. E. Zimmermann, T. R. McVicar, N. Vergopolan, A. Berg, & E. F. Wood, 2018. Present and future köppen-geiger climate classification maps at 1-km resolution. Scientific Data 5: 1–12.

    Article  Google Scholar 

  • Berry, G. W., P. J. Grim, & J. A. Ikelman, 1980. Thermal springs list for the United States. United States Department of Commerce, National Oceanographic and Atmospheric Association, Boulder, CO.

  • Bomford, M., S. C. Barry, & E. Lawrence, 2010. Predicting establishment success for introduced freshwater fishes: A role for climate matching. Biological Invasions 12: 2559–2571.

    Article  Google Scholar 

  • Brasher, A. M. D., C. D. Luton, S. L. Goodbred, & R. H. Wolff, 2006. Invasion Patterns along Elevation and Urbanization Gradients in Hawaiian Streams. Transactions of the American Fisheries Society 135: 1109–1129.

    Article  Google Scholar 

  • Bryant, C., N. R. Wheeler, F. Rubel, & R. H. French, 2017. Koppen-Geiger climatic zones (Package kgc). 9.

  • Cabrera, M. B., S. Bogan, P. Posadas, G. M. Somoza, J. I. Montoya-Burgos, & Y. P. Cardozo, 2017. Risks associated with introduction of poeciliids for control of mosquito larvae: first record of the non-native Gambusia holbrooki in Argentina. Journal of Fish Biology 91: 704–710.

    Article  CAS  PubMed  Google Scholar 

  • Chapman, F. A., S. A. Fitz-Coy, E. M. Thunberg, & C. M. Adams, 1997. United States of America trade in ornamental fish. Journal of the World Aquaculture Society 28: 1–10. https://doi.org/10.1111/j.1749-7345.1997.tb00955.x.

    Article  Google Scholar 

  • Chung, K. S., 2001. Critical thermal maxima and acclimation rate of the tropical guppy. Hydrobiologia 462: 253–257.

    Article  Google Scholar 

  • Courtenay Jr., W. R., & J. E. Deacon, 1982. Status of introduced fishes in certain spring systems in southern Nevada. Great Basin Naturalist 42: 361–366.

    Google Scholar 

  • Courtenay Jr., W. R., & J. E. Deacon, 1983. Fish introductions in the American southwest: a case history of Rogers Spring, Nevada. Southwestern Naturalist 28: 221–224.

    Article  Google Scholar 

  • Courtenay Jr., W. R., C. R. Robins, R. M. Bailey, & J. E. Deacon, 1987. Records of exotic fishes from Idaho and Wyoming. Great Basin Naturalist 47: 523–526.

    Google Scholar 

  • Courtenay, W., G. K. Meffe, & F. F. Snelson Jr, 1989. Small fishes in strange places: a review of introduced poeciliids Ecology and Evolution of Live-Bearing Fishes (Poeciliidae). Prentice-Hall, Inc.: 319–331.

    Google Scholar 

  • Davis, A. J. S., & J. A. Darling, 2017. Recreational freshwater fishing drives non-native aquatic species richness patterns at a continental scale. Diversity and Distributions 23: 692–702.

    Article  CAS  PubMed  Google Scholar 

  • Deacon, A. E., I. W. Ramnarine, & A. E. Magurran, 2011. How reproductive ecology contributes to the spread of a globally invasive fish. PLoS ONE 6: e24416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duggan, I. C., C. A. M. Rixon, & H. J. MacIsaac, 2006. Popularity and propagule pressure: Determinants of introduction and establishment of aquarium fish. Biological Invasions 8: 377–382.

    Article  Google Scholar 

  • Emde, S., J. Kochmann, T. Kuhn, D. D. Dörge, M. Plath, F. W. Miesen, & S. Klimpel, 2016. Cooling water of power plant creates “hot spots” for tropical fishes and parasites. Parasitology Research 115: 85–98.

    Article  PubMed  Google Scholar 

  • Englund, R. E., 1999. The impacts of introduced poeciliid fish and odonata on the endemic Megalagrion (Odonata) damselflies of Oahu Island, Hawaii. Journal of Insect Conservation 3: 225–243.

    Article  Google Scholar 

  • Fuller, P., & M. E. Neilson, 2015. The U.S. geological survey’s nonindigenous aquatic species database: Over thirty years of tracking introduced aquatic species in the United States (and counting). Management of Biological Invasions 6: 159–170.

    Article  Google Scholar 

  • Gallardo, B., M. Clavero, M. I. Sánchez, & M. Vilà, 2015. Global ecological impacts of invasive species in aquatic ecosystems. Global Change Biology 22: 151–163.

    Article  PubMed  Google Scholar 

  • Gertzen, E., O. Familiar, & B. Leung, 2008. Quantifying invasion pathways: fish introductions from the aquarium trade. Canadian Journal of Fisheries and Aquatic Sciences 65: 1265–1273.

    Article  Google Scholar 

  • Greenwood, M. F. D., 2017. Distribution, spread, and habitat predictability of a small, invasive, piscivorous fish in an important estuarine fish nursery. Fishes 2: 6.

    Article  Google Scholar 

  • Harper, D. D., & A. M. Farag, 2017. The thermal regime and species composition of fish and invertebrates in Kelly Warm Spring, Grand Teton National Park, Wyoming. Western North American Naturalist 77: 440–449.

    Article  Google Scholar 

  • Henkanaththegedara, S. M., & C. A. Stockwell, 2014. Intraguild predation may facilitate coexistence of native and non-native fish. Journal of Applied Ecology 51: 1057–1065.

    Article  Google Scholar 

  • Holitzki, T., R. MacKenzie, T. N. Wiegner, & K. J. McDermid, 2013. Differences in ecological structure, function, and native species abundance between native and invaded Hawaiian streams. Ecological Applications 23: 1367–1383.

    Article  PubMed  Google Scholar 

  • Hutchings, J. A., 2014. Unintentional selection, unanticipated insights: Introductions, stocking and the evolutionary ecology of fishes. Journal of Fish Biology 85: 1907–1926.

    Article  CAS  PubMed  Google Scholar 

  • Kerfoot, J. R., J. J. Lorenz, & R. G. Turingan, 2011. Environmental correlates of the abundance and distribution of Belonesox belizanus in a novel environment. Environmental Biology of Fishes 92: 125–139, https://doi.org/10.1007/s10641-011-9822-2.

    Article  Google Scholar 

  • Kerfoot Jr., J. R., 2012. Thermal tolerance of the invasive Belonesox belizanus, pike killifish, throughout ontogeny. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 317: 266–274.

    Article  Google Scholar 

  • Kinouchi, T., H. Yagi, & M. Miyamoto, 2007. Increase in stream temperature related to anthropogenic heat input from urban wastewater. Journal of Hydrology 335: 78–88.

    Article  Google Scholar 

  • Kottek, M., J. Grieser, C. Beck, B. Rudolf, & F. Rubel, 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15: 259–263.

    Article  Google Scholar 

  • Laha, M., & H. T. Mattingly, 2006. Ex situ evaluation of impacts of invasive mosquitofish on the imperiled Barrens topminnow. Environmental Biology of Fishes 78: 1–11.

    Article  Google Scholar 

  • Lawson, K. M., Q. M. Tuckett, J. L. Ritch, L. G. Nico, P. L. Fuller, R. E. Matheson, K. Gestring, & J. E. Hill, 2017. Distribution and status of five non-native fish species in the Tampa Bay drainage (USA), a hot spot for fish introductions. BioInvasions Records 6: 393–406.

    Article  Google Scholar 

  • Leyse, K. E., S. P. Lawler, & T. Strange, 2004. Effects of an alien fish, Gambusia affinis, on an endemic California fairy shrimp, Linderiella occidentalis: Implications for conservation of diversity in fishless waters. Biological Conservation 118: 57–65.

    Article  Google Scholar 

  • McCullagh, P., & J. A. Nelder, 1989. Generalized Linear Models. Chapman and Hall/CRC Press, London, UK.

    Book  Google Scholar 

  • McDowell, W. G., A. J. Benson, & J. E. Byers, 2014. Climate controls the distribution of a widespread invasive species: Implications for future range expansion. Freshwater Biology 59: 847–857.

    Article  Google Scholar 

  • Meffe, G. K., 1985. Predation and species replacement in American Southwestern fishes: A case study. Southwestern Association of Naturalists 30: 173–187.

    Article  Google Scholar 

  • Merkley, S. S., R. B. Rader, & G. B. Schaalje, 2015. Introduced Western Mosquitofish (Gambusia affinis) reduce the emergence of aquatic insects in a desert spring. Freshwater Science 34: 564–573.

    Article  Google Scholar 

  • Otto, R. G., 1973. Temperature tolerance of the mosquitofish, Gambmia affinis (Baird and Girard). Journal of Fish Biology 5: 575–585.

    Article  Google Scholar 

  • Pyke, G. H., 2008. Plague minnow or mosquito fish? A review of the biology and impacts of introduced Gambusia species. Annual Review of Ecology, Evolution, and Systematics 39: 171–191.

    Article  Google Scholar 

  • Pyšek, P., V. Jarošík, P. E. Hulme, I. Kühn, J. Wild, M. Arianoutsou, S. Bacher, F. Chiron, V. Didžiulis, F. Essl, P. Genovesi, F. Gherardi, M. Hejda, S. Kark, P. W. Lambdon, M. L. Desprez-Loustau, W. Nentwig, J. Pergl, K. Poboljšaj, W. Rabitsch, A. Roques, D. B. Roy, S. Shirley, W. Solarz, M. Vilà, & M. Winter, 2010. Disentangling the role of environmental and human pressures on biological invasions across Europe. Proceedings of the National Academy of Sciences of the United States of America 107: 12157–12162.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogowski, D. L., & C. A. Stockwell, 2006. Assessment of potential impacts of exotic species on populations of a threatened species, White Sands pupfish, Cyprinodon tularosa. Biological Invasions 8: 79–87.

    Article  Google Scholar 

  • Rubel, F., K. Brugger, K. Haslinger, & I. Auer, 2017. The climate of the European Alps: Shift of very high resolution Köppen-Geiger climate zones 1800-2100. Meteorologische Zeitschrift 26: 115–125.

    Article  Google Scholar 

  • Ruesink, J. L., 2005. Global analysis of factors affecting the outcome of freshwater fish introductions. Conservation Biology 19: 1883–1893.

    Article  Google Scholar 

  • Schofield, P. J., 2010. Update on geographic spread of invasive lionfishes (Pterois volitans [Linnaeus, 1758] and P. miles [Bennett, 1828]) in the Western North Atlantic Ocean, Caribbean Sea and Gulf of Mexico. Aquatic Invasions 5: 117–122.

    Article  Google Scholar 

  • Schofield, P. J., & L. Akins, 2019. Non-native marine fishes in florida: Updated checklist, population status and early detection/rapid response. BioInvasions Records 8: 898–910.

    Article  Google Scholar 

  • Schofield, P. J., & W. F. Loftus, 2015. Non-native fishes in Florida freshwaters: a literature review and synthesis. Reviews in Fish Biology and Fisheries 25: 117–145.

    Article  Google Scholar 

  • Shafland, P., K. Gestring, & M. Stanford, 2008. Florida’s exotic freshwater fishes-2007. Florida Sceintist 71: 220–245.

    Google Scholar 

  • Simberloff, D., 2009. The role of propagule pressure in biological invasions. Annual Review of Ecology, Evolution, and Systematics 40: 81–102.

    Article  Google Scholar 

  • Smith, G. R., & L. E. Smith, 2015. Effects of western mosquitofish (Gambusia affinis) on tadpole production of gray treefrogs (Hyla versicolor). Herpetological Conservation and Biology 10: 723–727.

    Google Scholar 

  • Somers, K. A., E. S. Bernhardt, J. B. Grace, B. A. Hassett, E. B. Sudduth, S. Wang, & D. L. Urban, 2013. Streams in the urban heat island: Spatial and temporal variability in temperature. Freshwater Science 32: 309–326.

    Article  Google Scholar 

  • Stearns, S. C., 1983. A natural experiment in life-history evolution: Field data on the introduction of mosquitofish (Gambusia affinis) to Hawaii. Evolution 37: 601-617.

    PubMed  Google Scholar 

  • Sutton, T. M., R. A. Zeiber, & B. E. Fisher, 2013. Agonistic behavioral interactions between introduced western mosquitofish and native topminnows. Journal of Freshwater Ecology 28: 1–16.

    Article  Google Scholar 

  • R Core Development Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing Vienna Austria. R Foundation for Statistical Computing, Vienna, Austria, http://www.r-project.org/.

  • Thompson, K. A., J. E. Hill, & L. G. Nico, 2012. Eastern mosquitofish resists invasion by nonindigenous poeciliids through agonistic behaviors. Biological Invasions 14: 1515–1529.

    Article  Google Scholar 

  • Tuckett, Q. M., J. L. Ritch, K. M. Lawson, L. L. Lawson, & J. E. Hill, 2016. Variation in cold tolerance in escaped and farmed non-native green swordtails (Xiphophorus hellerii) revealed by laboratory trials and field introductions. Biological Invasions 18: 45–56.

    Article  Google Scholar 

  • Tuckett, Q. M., J. L. Ritch, K. M. Lawson, & J. E. Hill, 2017. Landscape-scale survey of non-native fishes near ornamental aquaculture facilities in Florida, USA. Biological Invasions 19: 223–237.

    Article  Google Scholar 

  • Tuckett, Q. M., A. E. Deacon, D. F. Fraser, T. J. Lyons, K. M. Lawson, & J. E. Hill, 2021. Unstable intraguild predation causes establishment failure of a globally invasive species. Ecology e03411

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work would not have been possible without all those that maintain and contribute to the United States Geological Survey Nonindigenous Aquatic Species database, including Pam Fuller, the former program leader. We are grateful to colleagues and Director Craig Watson at the University of Florida/IFAS Tropical Aquaculture Laboratory (TAL) for their assistance and advice on the manuscript. Funding was provided by units of the University of Florida/IFAS (School of Forest Resources and Conservation, College of Agricultural and Life Sciences, and the TAL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quenton M. Tuckett.

Ethics declarations

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Additional information

Handling editor: Eric R. Larson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: the required government non-endorsement disclaimer was missing.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 683 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuckett, Q.M., Lawson, K.M., Lipscomb, T.N. et al. Non-native poeciliids in hot water: the role of thermal springs in facilitating invasion of tropical species. Hydrobiologia 848, 4731–4745 (2021). https://doi.org/10.1007/s10750-021-04669-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04669-9

Keywords

Navigation