Skip to main content

Advertisement

Log in

Divergent responses in morphology and life history to an Asplanchna kairomone between attached and free-swimming Brachionus dorcas (Rotifera)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In the presence of the predatory rotifer Asplanchna, some Brachionus and Keratella species develop inducible morphological, behavioral, and life history defenses that enable prey to survive predation pressure. However, whether clones belonging to the same rotifer species but with different behaviors (attached and free-swimming) exhibit divergent responses in morphology and life history remains largely unknown. In this study, neonates of an attached and a free-swimming clone of B. dorcas were exposed to media conditioned by A. brightwellii neonates at densities of 0 (control), 40, 80, and 160 ind l−1 for 24 h, and their morphological and life-table demographic parameters were measured and calculated. We showed that the Asplanchna kairomone significantly increased the propensity to attach in the attached clone only, with attached individuals effectively protected from Asplanchna predation. In response to increasing Asplanchna kairomone concentration, the attached clone did not show any morphological changes, but it did exhibit a decreased net reproductive rate and intrinsic rate of population increase. The free-swimming clone developed elongated posterolateral spines and a decreased intrinsic rate of population increase, as well as a decrease in the proportion of sexual offspring. Thus, both clones exhibited reproductive costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Reference

  • Aránguiz-Acuña, A., R. Ramos-Jiliberto, N. Sarma, S. S. S. Sarma, R. Bustamente & V. Toledo, 2010. Benefits, costs and reactivity of inducible defences: an experimental test with rotifers. Freshwater Biology 55: 2114–2122.

    Article  Google Scholar 

  • Case, T. J., 2000. An Illustrated Guide to Theoretical Ecology. Oxford University Press, Oxford.

    Google Scholar 

  • Charoy, C. & P. Clement, 1993. Foraging behaviour of Brachionus calyciflorus (Pallas): variations in the swimming path according to presence or absence of algal food (Chlorella). Hydrobiologia 255(256): 95–100.

    Article  Google Scholar 

  • Dahms, H.-U., A. Hagiwara & J.-S. Lee, 2011. Ecotoxicology, ecophysiology, and mechanistic studies with rotifers. Aquatic Toxicology 101: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, J. J., 1966. Rotifer ecology and embryological induction. Science 151: 1234–1237.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, J. J., 1967. Asplanchna and posterolateral spine induction in Brachionus calyciflorus. Hydrobiologie 64: 1–62.

    Google Scholar 

  • Gilbert, J. J., 1980. Developmental polymorphism in the rotifer Asplanchna sieboldi. American Scientist 68: 636–646.

    Google Scholar 

  • Gilbert, J. J., 1993. Rotifera. In Adiyodi, K. G. & R. G. Adiyodi (eds), Reproductive Biology of Invertebrates, Vol. VI., Part A: Asexual Propagation and Reproductive Strategies Oxford & IBH Publishing Co., New Delhi: 231–263.

    Google Scholar 

  • Gilbert, J. J., 1999. Kairomone-induced morphological defenses in rotifers. In Tollrian, R. & C. D. Harvell (eds), The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton, New Jersey: 127–141.

    Chapter  Google Scholar 

  • Gilbert, J. J., 2011. Induction of different defences by two enemies in the rotifer Keratella tropica: response priority and sensitivity to enemy density. Freshwater Biology 56: 926–938.

    Article  Google Scholar 

  • Gilbert, J. J., 2013. The cost of predator-induced morphological defense in rotifers: experimental studies and synthesis. Journal of Plankton Research 35: 461–472.

    Article  Google Scholar 

  • Gilbert, J. J., 2014. Morphological and behavioral responses of a rotifer to the predator Asplanchna. Journal of Plankton Research 36: 1576–1584.

    Article  Google Scholar 

  • Gilbert, J. J., 2017. Non-genetic polymorphisms in rotifers: environmental and endogenous controls, development, and features for predictable or unpredictable environments. Biological Review 92: 964–992.

    Article  Google Scholar 

  • Gilbert, J. J., 2018. Morphological variation and its significance in a polymorphic rotifer: environmental, endogenous, and genetic controls. BioScience 68: 169–181.

    Article  Google Scholar 

  • Gilbert, J. J., 2019. Attachment behavior in the rotifer Brachionus rubens: induction by Asplanchna and effect on sexual reproduction. Hydrobiologia 844: 9–20.

    Article  CAS  Google Scholar 

  • Green, J., 1974. Parasites and epibionts of Cladocera. Transactions of the Zoological Society of London 32: 417–515.

    Article  Google Scholar 

  • Guo, R., T. W. Snell & J. Yang, 2011. Ecological strategy of rotifer (Brachionus calyciflorus) exposed to predator- and competitor-conditioned media. Hydrobiologia 658: 163–171.

    Article  Google Scholar 

  • Hairston, N. G., 1987. Diapause as a predator avoidance adaptation. In: Kerfoot, W. C. & A. Sih (eds), Predation: Direct and Indirect Impacts on Aquatic Communities. Hanover, U.S.A., University Press of New England: 281-290.

  • Iyer, N. & R. T. Rao, 1993. Effect of the epizoic rotifer Brachionus rubens on the population growth of three cladoceran species. Hydrobiologia 255(256): 325–332.

    Article  Google Scholar 

  • Iyer, N. & R. T. Rao, 1995. Epizoic mode of life in Brachionus rubens Ehrenberg as a deterrent against predation by Asplanchna intermedia Hudson. Hydrobiologia 313(314): 377–380.

    Article  Google Scholar 

  • Li, S. H., H. Zhu, Y. Z. Xia, M. J. Yu, K. S. Liu, Z. Y. Ye & Y. X. Chen, 1959. The mass culture of unicellular green algae. Acta Hydrobiologica Sinica 4: 462–472.

    Google Scholar 

  • May, L., 1989. Epizoic and parasitic rotifers. Hydrobiologia 186(187): 59–67.

    Article  Google Scholar 

  • Michaloudi, E., S. Papakostas, G. Stamou, V. Neděla, E. Tihlařiková, W. Zhang & S. A. J. Declerck, 2018. Reverse taxonomy applied to the Brachionus calyciflorus cryptic species complex: morphometric analysis confirms species delimitations revealed by molecular phylogenetic analysis and allows the (re)description of four species. PLoS ONE 13:

    Article  PubMed  PubMed Central  Google Scholar 

  • Nandini, S., R. Pérez-Chávez & S. S. S. Sarm, 2003. The effect of prey morphology on the feeding behaviour and population growth of the predatory rotifer Asplanchna sieboldi: a case study using five species of Brachionus (Rotifera). Freshwater Biology 48: 2131–2140.

    Article  Google Scholar 

  • Nandini, S., F. S. Zúñiga-Juárez & S. S. S. Sarma, 2014. Direct and indirect effects of invertebrate predators on population level responses of the rotifer Brachionus havanaensis (Rotifera). International Review of Hydrobiology 99: 107–116.

    Article  Google Scholar 

  • Pan, L., Y.-L. Xi, J. Gu, S. Jiang, H. Zhu & B.-X. Zhang, 2017. Interactive effects of algal level and predator density (Asplanchna sieboldi) on the life-history strategy and morphology of Brachionus calyciflorus. Journal of Experimental Zoology 327: 523–531.

    Article  PubMed  Google Scholar 

  • Pan, L., Y.-L. Xi, J. Gu, S. Jiang, H. Zhu & B.-X. Zhang, 2018. Asplanchna-kairomone induces life history shifts in Brachionus angularis (Rotifera). Annual Limnologie - International Journal of Limnology 54:

    Article  Google Scholar 

  • Pauwels, K., L. De Meester, H. Michels, E. Jeppesen & E. Decaestecker, 2014. An evolutionary perspective on the resistance of Daphnia to the epizoic rotifer Brachionus rubens. Freshwater Biology 59: 1247–1256.

    Article  Google Scholar 

  • Pavón-Meza, E. L., S. S. S. Sarma & S. Nandini, 2008. Combined effects of temperature, food availability and predator’s (Asplanchna girodi) allelochemicals on the demography and population growth of Brachionus havanaensis (Rotifera). Allelopathy Journal 21: 95–106.

    Google Scholar 

  • Peña-Aguado, F., J. Morales-Ventura, S. Nandini & S. S. S. Sarma, 2008. Influence of vertebrate and invertebrate infochemicals on the population growth and epizoic tendency of Brachionus rubens (Ehrenberg) (Rotifera: Brachionidae). Allelopathy Journal 22: 123–130.

    Google Scholar 

  • Pianka, E. R., 1988. Evolutionary Ecology, 3rd ed. Harper & Row, New York.

    Google Scholar 

  • Pijanowska, J. & G. Stolpe, 1996. Summer diapause in Daphnia as a reaction to the presence of fish. Journal of Plankton Research 18: 1407–1412.

    Article  Google Scholar 

  • Riessen, H. P., 2012. Costs of predator-induced morphological defences in Daphnia. Freshwater Biology 57: 1422–1433.

    Article  Google Scholar 

  • Ruttner-Kolisko, A., 1977. Suggestions for biomass calculations of planktonic rotifers. Archiv Für Hydrobiologie (Ergebnisse der Limnologie) 40: 71–76.

    Google Scholar 

  • Sarma, S. S. S. & S. Nandini, 2007. Small prey size offers immunity to predation: A case study on two species of Asplanchna and three Brachionid prey (Rotifera). Hydrobiologia 593: 67–76.

    Article  Google Scholar 

  • Sarma, S., R. A. L. Resendiz & S. Nandini, 2011. Morphometric and demographic responses of Brachionid prey (Brachionus calyciflorus Pallas and Plationus macracanthus (Daday)) in the presence of different densities of the predator Asplanchna brightwellii (Rotifera: Asplanchnidae). Hydrobiologia 662: 179–187.

    Article  Google Scholar 

  • Ślusarczyk, M., 1995. Predator-induced diapause in Daphnia. Ecology 76: 1008–1013.

    Article  Google Scholar 

  • Ślusarczyk, M., 1999. Predator-induced diapause in Daphnia magna may require two chemical cues. Oecologia 119: 159–165.

    Article  PubMed  Google Scholar 

  • Ślusarczyk, M., 2001. Food threshold for diapause in Daphnia under the threat of fish predation. Ecology 82: 1089–1096.

    Article  Google Scholar 

  • Snell, T. W. & C. R. Janssen, 1995. Rotifers in ecotoxicology: a review. Hydrobiologia 313(314): 231–247.

    Article  Google Scholar 

  • Sommer, S., S. Nandini, S. S. S. Sarma, A. Ozgul & D. Fontaneto, 2016. Rotifers in Lake Orta: a potential ecological and evolutionary model system. Journal of Limnology 75(s2): 67–75.

    Article  Google Scholar 

  • Stelzer, C., 2005. Evolution of rotifer life histories. Hydrobiologia 546: 335–346.

    Article  Google Scholar 

  • Stemberger, R. S., 1988. Reproductive costs and hydrodynamic benefits of chemically induced defenses in Keratella testudo. Limnology & Oceanography 33: 593–606.

    Article  Google Scholar 

  • Tollrian, R. & S. I. Dodson, 1999. Inducible defenses in Cladocera: constraints, costs, and multipredator environments. In Tollrian, R. & C. D. Harvell (eds), The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton, NJ: 177–202.

    Chapter  Google Scholar 

  • Vadstein, O., L. M. Olsen & T. Andersen, 2012. Prey-predator dynamics in rotifers: density-dependent consequences of spatial heterogeneity due to surface attachment. Ecology 93: 1795–1801.

    Article  PubMed  Google Scholar 

  • Wallace, R. L., T. W. Snell & C. Ricci, 2006. Rotifera. Vol 1: Biology, ecology and systematics. In: Segers, H. & H. J. F. Dumont (eds). Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 23, Kenobi Productions. The Hague: Ghent/Backhuys Academic Publishing.

  • Weber, C. I., 1993. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. 4th ed. United States Environmental Protection Agency. Cincinnati, Ohio, EPA/600/4-90/027F, xv + 293 pp.

  • Wen, X.-L., Y.-L. Xi, F.-P. Qian, G. Zhang & X.-L. Xiang, 2011. Comparative analysis of rotifer community structure in five subtropical shallow lakes in east China: role of physical and chemical conditions. Hydrobiologia 662: 303–316.

    Article  Google Scholar 

  • Wen, X.-L., Y.-L. Xi, G. Zhang, Y.-H. Xue & X.-L. Xiang, 2016. Coexistence of cryptic Brachionus calyciflorus (Rotifera) species: roles of environmental variables. Journal of Plankton Research 38: 478–489.

    Article  Google Scholar 

  • Xue, Y.-H., X.-X. Yang, G. Zhang & Y.-L. Xi, 2017. Morphological differentiation of Brachionus calyciforus caused by predation and coal ash pollution. Scientific Reports 7:

    Article  Google Scholar 

  • Yin, X. W., W. Jin, Y. Zhou, P. Wang & W. Zhao, 2017. Hidden defensive morphology in rotifers: benefits, costs, and fitness consequences. Scientific Reports 7:

    Article  Google Scholar 

  • Zhang, Z. & X. Huang, 1991. Methods for Study on Freshwater Plankton. Science Press, Beijing.

    Google Scholar 

  • Zhang, Y., A. Zhou, Y.-L. Xi, Q. Sun, L.-F. Ning, P. Xie, X.-L. Wen & X.-L. Xiang, 2018. Temporal patterns and processes of genetic differentiation of the Brachionus calyciflorus (Rotifera) complex in a subtropical shallow lake. Hydrobiologia 807: 313–331.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (31971562, 31470015) and the Foundation of Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Shan Jiang, Yan Bai, Fan Sun, and Ge Le-Le. The first draft of the manuscript was written by Shan Jiang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yi-Long Xi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

The manuscript has not been submitted to more than one journal for simultaneous consideration, or published elsewhere in any form or language (partially or in full). The submitted work is original and presents all results of a single study clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation. All authors adhered to discipline-specific rules for acquiring and processing data. No data, text, or theories by others are presented as if they were the authors’ own. Proper acknowledgements to other works have been given. No material is verbatim copied.

Additional information

Handling editor: Bernadette Pinel-Alloul

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Bai, Y., Sun, F. et al. Divergent responses in morphology and life history to an Asplanchna kairomone between attached and free-swimming Brachionus dorcas (Rotifera). Hydrobiologia 848, 1925–1937 (2021). https://doi.org/10.1007/s10750-021-04572-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04572-3

Keywords

Navigation