Skip to main content

Advertisement

Log in

Downstream alterations on hydrodynamic fields by hydropower plant operations: implications for upstream fish migration

  • PERSPECTIVES ON SUSTAINABLE HYDRO-POWER
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This study identifies hydrodynamic alterations in flow downstream of a dam that are related to hydropower plant (HPP) operation and that might attract Neotropical potamodromous fish to unsafe places in the tailrace during their reproductive migration. Our hypotheses are (1) the hydrodynamic flow in the tailrace presents conditions that are strong attractive for fish than those found in the downstream reach and (2) there are no velocity barriers preventing the upstream migrant from reaching the tailrace over a wide range of turbine discharge. Two calibrated numerical models were created for the Três Marias HPP (Brazil), using different turbine discharges: (1) a three-dimensional (3D) model of flow in the tailrace and (2) a two-dimensional (2D) model for flow in the 3-km reach downstream of the dam. Resulting flow fields of the Três Marias HPP tailrace have elevated hydraulic strain and velocity homogeneity by as compared to the flow field of the downstream reach. The tailrace velocities are slow for mature individuals of all study species, which may swim from downstream reach to unsafe areas in their sustainable and prolonged mode by available corridors for different turbined discharges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aarestrup, K., N. Jepsen, G. Rasmussen & F. Økland, 1999. Movements of two strains of radio tagged Altlantic salmon, Salmo salar L., smolts through a reservoir. Fisheries Management and Ecology 6: 97–107.

    Google Scholar 

  • Alho, P. & J. Mäkinen, 2010. Hydraulic parameter estimations of a 2D model validated with sedimentological findings in the point bar environment. Hydrological Processes 24: 2578–2593.

    Google Scholar 

  • Alvarez, L. V., M. W. Schmeeckle & P. E. Grams, 2017. A detached eddy simulation model for the study of lateral separation zones along a large canyon-bound river. Journal of Geophysical Research: Earth Surface 122: 25–49.

    Google Scholar 

  • Alves, C. B. M., 2007. Evaluation of fish passage through the Igarapé Dam fish ladder (rio Paraopeba, Brazil), using marking and recapture. Neotropical Ichthyology 5: 233–236.

    Google Scholar 

  • ANA, 2020. HidroWeb. Agência Nacional de Águas. http://www.snirh.gov.br/hidroweb/mapa [Acessed January 15, 2020].

  • Andersson, A. G., D.-E. Lindberg, E. M. Lindmark, K. Leonardsson, P. Andreasson, H. Lundqvist & T. S. Lundström, 2012. A study of the location of the entrance of a fishway in a regulated river with CFD and ADCP. Modelling and Simulation in Engineering 2012: 1–12.

    Google Scholar 

  • Andrade, F., I. G. Prado, R. C. Loures & A. L. Godinho, 2012. Evaluation of techniques used to protect tailrace fishes during turbine maneuvers at Três Marias Dam, Brazil. Neotropical Ichthyology 10: 723–730.

    Google Scholar 

  • Andrade, F., I. Prado, R. Rodrigues & A. Godinho, 2016. Influence of discharge of Três Marias dam over different temporal scales on the capture of mandi in the tailrace Risk Assessment of Fish Death at Hydropower Plants in Southeastern Brazil. Companhia Energética de Minas Gerais, Belo Horizonte, Brazil: 247–258. http://www.cemig.com.br/pt-br/A_Cemig_e_o_Futuro/sustentabilidade/nossos_programas/ambientais/peixe _vivo/publicacoes/Documents/E-BooksPeixeVivo/SeriePeixevivo-vol5-PEIXES_E_HIDRELETRICAS-e-book.pdf [Acessed January 05, 2020].

  • Ansar, A., B. Flyvbjerg, A. Budzier & D. Lunn, 2014. Should we build more large dams? The actual costs of hydropower megaproject development. Energy Policy 69: 43–56.

    Google Scholar 

  • Ansys, 2009. Ansys FLuent 12.0 User’s Guide. Ansys Inc. https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/main_pre.htm [Acessed June 30, 2020].

  • Beamish, F. W. H., 1978. Swimming Capacity Fish Physiology. Academic Press, New York, NY: 101–187.

    Google Scholar 

  • Best, J., 2019. Anthropogenic stresses on the world’s big rivers. Nature Geoscience 12: 7–21.

    CAS  Google Scholar 

  • Blocken, B. & C. Gualtieri, 2012. Ten iterative steps for model development and evaluation applied to computational fluid dynamics for environmental fluid mechanics. Environmental Modelling & Software 33: 1–22.

    Google Scholar 

  • Boavida, I., J. M. Santos, C. Katopodis, M. T. Ferreira & A. Pinheiro, 2013. Uncertainty in predicting the fish-response to two-dimensional habitat modeling using field data. River Research and Applications 29: 1164–1174.

    Google Scholar 

  • Burnett, N. J., S. G. Hinch, M. R. Donaldson, N. B. Furey, D. A. Patterson, D. W. Roscoe & S. J. Cooke, 2013. Alterations to dam-spill discharge influence sex-specific activity, behaviour and passage success of migrating adult sockeye salmon. Ecohydrology 7: 1094–1104.

    Google Scholar 

  • Castro-Santos, T., 2005. Optimal swim speeds for traversing velocity barriers: an analysis of volitional high-speed swimming behavior of migratory fishes. Journal of Experimental Biology 208: 421–432.

    Google Scholar 

  • Castro-Santos, T., 2006. Modeling the effect of varying swim speeds on fish passage through velocity barriers. Transactions of the American Fisheries Society 135: 1230–1237.

    Google Scholar 

  • CBHSF, C. da B. H. do R. S. F., 2019. A Bacia. Comitê da Bacia Hidrográfica do Rio São Francisco. https://cbhsaofrancisco.org.br/a-bacia/ [Acessed January 7, 2020].

  • Chung, Y. M., H. J. Sung & P. A. Krogstad, 2002. Modulation of near-wall turbulence structure with wall blowing and suction. AIAA Journal 40: 1529–1535.

    Google Scholar 

  • Collin, S. P., N. J. Marshall & A. J. Kalmijn, 2000. Detection and processing of electromagnetic and near–field acoustic signals in elasmobranch fishes. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences Royal Society 355: 1135–1141.

    Google Scholar 

  • de Faria, F. A. M., A. Davis, E. Severnini & P. Jaramillo, 2017. The local socio-economic impacts of large hydropower plant development in a developing country. Energy Economics 67: 533–544.

    Google Scholar 

  • Enders, E. C., M. H. Gessel, J. J. Anderson & J. G. Williams, 2012. Effects of decelerating and accelerating flows on juvenile salmonid behavior. Transactions of the American Fisheries Society 141: 357–364.

    Google Scholar 

  • Fernandez, D. R., A. A. Agostinho & L. M. Bini, 2004. Selection of an experimental fish ladder located at the dam of the Itaipu Binacional, Paraná River, Brazil. Brazilian Archives of Biology and Technology Instituto de Tecnologia do Paraná 47: 579–586.

    Google Scholar 

  • Ferziger, J. H. & M. Perić, 2002. Computational Methods for Fluid Dynamics. Springer, Berlin.

    Google Scholar 

  • Gard, M., 2009. Comparison of spawning habitat predictions of PHABSIM and River2D models. International Journal of River Basin Management 7: 55–71.

    Google Scholar 

  • Giorgi, A. E., T. W. Hillman, J. R. Stevenson, S. G. Hays & C. M. Peven, 1997. Factors that influence the Downstream Migration rates of Juvenile Salmon and Steelhead through the hydroelectric system in the Mid-Columbia River Basin. North American Journal of Fisheries Management Wiley 17: 268–282.

    Google Scholar 

  • Gisen, D. C., R. B. Weichert & J. M. Nestler, 2017. Optimizing attraction flow for upstream fish passage at a hydropower dam employing 3D Detached-Eddy Simulation. Ecological Engineering 100: 344–353.

    Google Scholar 

  • Godinho, A. L., B. Kynard & H. P. Godinho, 2007. Migration and spawning of female surubim (Pseudoplatystoma corruscans, Pimelodidae) in the São Francisco river, Brazil. Environmental Biology of Fishes 80: 421–433.

    Google Scholar 

  • Goodwin, R. A., J. M. Nestler, J. J. Anderson, L. J. Weber & D. P. Loucks, 2006. Forecasting 3-D fish movement behavior using an Eulerian–Lagrangian–agent method (ELAM). Ecological Modelling 192: 197–223.

    Google Scholar 

  • Goodwin, R. A., M. Politano, J. W. Garvin, J. M. Nestler, D. Hay, J. J. Anderson, L. J. Weber, E. Dimperio, D. L. Smith & M. Timko, 2014. Fish navigation of large dams emerges from their modulation of flow field experience. Proceedings of the National Academy of Sciences Environmental Laboratory, US Army Engineer Research and Development Center, Portland, OR 97208, United States 111: 5277–5282.

  • Gowans, A. R. D., J. D. Armstrong, I. G. Priede & S. Mckelvey, 2003. Movements of Atlantic salmon migrating upstream through a fish-pass complex in Scotland. Ecology of Freshwater Fish 12: 177–189.

    Google Scholar 

  • Graf, W. L., 2006. Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology 79: 336–360.

    Google Scholar 

  • Gutfreund, C., S. Makrakis, T. Castro-Santos, L. F. Celestino, J. H. P. Dias & M. C. Makrakis, 2018. Effectiveness of a fish ladder for two Neotropical migratory species in the Paraná River. Marine and Freshwater Research 69: 1848.

    Google Scholar 

  • Hamududu, B. & A. Killingtveit, 2012. Assessing climate change impacts on global hydropower. Energies 5: 305–322.

    Google Scholar 

  • IEA, 2019. Renewables 2019: market analysis and forecast from 2019 to 2024. International Energy Agency. https://www.iea.org/reports/renewables-2019/power#hydropower [Acessed December 23, 2019].

  • Johnson, E. L., T. S. Clabough, C. A. Peery, D. H. Bennett, T. C. Bjornn, C. C. Caudill & M. C. Richmond, 2007. Estimating adult Chinook salmon exposure to dissolved gas supersaturation downstream of hydroelectric dams using telemetry and hydrodynamic models. River Research and Applications 23: 963–978.

    Google Scholar 

  • Jowett, I. G. & M. J. Duncan, 2012. Effectiveness of 1D and 2D hydraulic models for instream habitat analysis in a braided river. Ecological Engineering 48: 92–100.

    Google Scholar 

  • Kang, S., & F. Sotiropoulos, 2012. Assessing the predictive capabilities of isotropic, eddy viscosity Reynolds-averaged turbulence models in a natural-like meandering channel. Water Resources Research 48.

  • Kasvi, E., P. Alho, E. Lotsari, Y. Wang, A. Kukko, H. Hyyppä & J. Hyyppä, 2015. Two-dimensional and three-dimensional computational models in hydrodynamic and morphodynamic reconstructions of a river bend: sensitivity and functionality. Hydrological Processes 29: 1604–1629.

    Google Scholar 

  • Katopodis, C., & J. G. Williams, 2012. The development of fish passage research in a historical context. Ecological Engineering

  • Katzman, S. M., J. Greathouse, J. M. Roessig, J. Graham, D. E. Cocherell & J. J. Cech, 2010. Water velocity preferences of Coho Salmon during the parr-smolt transformation. Environmental Biology of Fishes 88: 79–84.

    Google Scholar 

  • Lacey, R. W. J., V. S. Neary, J. C. Liao, E. C. Enders & H. M. Tritico, 2012. The IPOS framework: linking fish swimming performance in altered flows from laboratory experiments to rivers. River Research and Applications 28: 429–443.

    Google Scholar 

  • Lindberg, D.-E., K. Leonardsson, A. G. Andersson, T. S. Lundström & H. Lundqvist, 2013. Methods for locating the proper position of a planned fishway entrance near a hydropower tailrace. Limnologica 43: 339–347.

    Google Scholar 

  • Lopes, L. F. G., J. S. A. Do Carmo, R. M. V. Cortes & D. Oliveira, 2004. Hydrodynamics and water quality modelling in a regulated river segment: Application on the instream flow definition. Ecological Modelling 173: 197–218.

    CAS  Google Scholar 

  • Lopes, J. M., C. B. M. Alves, A. Peressin & P. S. Pompeu, 2018. Influence of rainfall, hydrological fluctuations, and lunar phase on spawning migration timing of the Neotropical fish Prochilodus costatus. Hydrobiologia 818: 145–161.

    CAS  Google Scholar 

  • Loures, R. C. & P. S. Pompeu, 2012. Temporal variation in fish community in the tailrace at Três Marias Hydroelectric Dam, São Francisco River, Brazil. Neotropical Ichthyology 10: 731–740.

    Google Scholar 

  • Loures, R. C. & P. S. Pompeu, 2015. Seasonal and diel changes in fish distribution in a tropical hydropower plant tailrace: evidence from hydroacoustic and gillnet sampling. Fisheries Management and Ecology 22: 185–196.

    Google Scholar 

  • Makrakis, S., A. P. S. Bertão, J. F. M. Silva, M. C. Makrakis, F. J. Sanz-Ronda & L. F. Celestino, 2019. Hydropower development and fishways: a need for connectivity in rivers of the Upper Paraná Basin. Sustainability 11: 3749.

    Google Scholar 

  • Nestler, J. M., R. A. Goodwin, D. L. Smith, J. J. Anderson & S. Li, 2008. Optimum fish passage and guidance designs are based in the hydrogeomorphology of natural rivers. River Research and Applications 24: 148–168.

    Google Scholar 

  • Nestler, J. M., P. S. Pompeu, R. A. Goodwin, D. L. Smith, L. G. M. Silva, C. R. M. Baigún & N. O. Oldani, 2012. The river machine: a template for fish movement and habitat, fluvial geomorphology, fluid dynamics and biogeochemical cycling. River Research and Applications 28: 490–503.

    Google Scholar 

  • Oliveira, I. D. C. E., D. D. Da Silva, H. A. S. Guedes, J. A. Dergam & C. B. D. M. Ribeiro, 2016. One-and two-dimensional ecohydraulic modeling of Formoso river (MG). Engenharia Agricola Sociedade Brasileira de Engenharia Agricola 36: 1050–1062.

    Google Scholar 

  • Parsapour-Moghaddam, P. & C. D. Rennie, 2018. Calibration of a 3D hydrodynamic meandering river model using fully spatially distributed 3D ADCP velocity data. Journal of Hydraulic Engineering 144: 04018010.

    Google Scholar 

  • Parsapour-Moghaddam, P., C. P. Brennan, C. D. Rennie, C. K. Elvidge & S. J. Cooke, 2019. Impacts of channel morphodynamics on fish habitat utilization. Environmental Management Springer, US 64: 272–286.

    Google Scholar 

  • Pham, L. H. H. P. & R. Rusli, 2016. A review of experimental and modelling methods for accidental release behaviour of high-pressurised CO2 pipelines at atmospheric environment. Process Safety and Environmental Protection 104: 48–84.

    CAS  Google Scholar 

  • Piper, A. T., R. M. Wright & P. S. Kemp, 2012. The influence of attraction flow on upstream passage of European eel (Anguilla anguilla) at intertidal barriers. Ecological Engineering 44: 329–336.

    Google Scholar 

  • Poff, N. L., D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks & J. C. Stromberg, 1997. Natural flow regime. BioScience 47: 769–784.

    Google Scholar 

  • Pointwise, 2003. Gridgen User Manual, Version 15. Pointwise, Inc.

  • Politano, M., P. Carrica & L. Weber, 2009. A multiphase model for the hydrodynamics and total dissolved gas in tailraces. International Journal of Multiphase Flow Pergamon 35: 1036–1050.

    CAS  Google Scholar 

  • Rodriguez, J. F., F. A. Bombardelli, M. H. García, K. M. Frothingham, B. L. Rhoads & J. D. Abad, 2004. High-resolution numerical simulation of flow through a highly sinuous river reach. Water Resources Management 18: 177–199.

    Google Scholar 

  • Santos, H. A., P. dos Santos Pompeu & C. B. Martinez, 2007. Swimming performance of the migratory Neotropical fish Leporinus reinhardti (Characiformes: Anostomidae). Neotropical Ichthyology 5: 139–146.

    Google Scholar 

  • Santos, H. A., P. Pompeu, G. Vicentini & C. Martinez, 2008. Swimming performance of the freshwater neotropical fish: Pimelodus maculatus Lacepède, 1803. Brazilian Journal of Biology 68: 433–439.

    CAS  Google Scholar 

  • Santos, H. A., P. dos Santos Pompeu & D. O. L. Kenji, 2012a. Changes in the flood regime of São Francisco River (Brazil) from 1940 to 2006. Regional Environmental Change 12: 123–132.

    Google Scholar 

  • Santos, H. A., Viana, E. M. D. F., P. S. Pompeu & C. B. Martinez, 2012b. Optimal swim speeds by respirometer: an analysis of three neotropical species. Neotropical Ichthyology 10: 805–811.

    Google Scholar 

  • Santos, H. A., B. Duarte, A. Pinheiro, D. Cruz & G. Souza, 2018. Flow characteristics in tailrace: understanding how hydrodynamics may attract fish to hydropower plant in South America. Marine and Freshwater Research 69: 1962.

    Google Scholar 

  • Scruton, D. A., R. K. Booth, C. J. Pennell, F. Cubitt, R. S. McKinley & K. D. Clarke, 2007. Conventional and EMG telemetry studies of upstream migration and tailrace attraction of adult Atlantic salmon at a hydroelectric installation on the Exploits River, Newfoundland, Canada. Hydrobiologia 582: 67–79.

    Google Scholar 

  • Scruton, D. A., C. J. Pennell, C. E. Bourgeois, R. F. Goosney, L. King, R. K. Booth, W. Eddy, T. R. Porter, L. M. N. Ollerhead & K. D. Clarke, 2008. Hydroelectricity and fish: a synopsis of comprehensive studies of upstream and downstream passage of anadromous wild Atlantic salmon, Salmo salar, on the Exploits River, Canada. Hydrobiologia 609: 225–239.

    Google Scholar 

  • Silva, A. T., C. Katopodis, J. M. Santos, M. T. Ferreira & A. N. Pinheiro, 2012. Cyprinid swimming behaviour in response to turbulent flow. Ecological Engineering 44: 314–328.

    Google Scholar 

  • Silva, A. T., K. M. Bærum, R. D. Hedger, H. Baktoft, H.-P. Fjeldstad, K. Ø. Gjelland, F. Økland & T. Forseth, 2020. The effects of hydrodynamics on the three-dimensional downstream migratory movement of Atlantic salmon. Science of The Total Environment 705: 135773.

    CAS  Google Scholar 

  • Smith, I. P., A. D. F. Johnstone & G. W. Smith, 1997. Upstream migration of adult Atlantic salmon past a fish counter weir in the Aberdeenshire Dee, Scotland. Journal of Fish Biology 51: 266–274.

    Google Scholar 

  • Sotiropoulos, F., 2019. Hydraulic engineering in the era of Big Data and extreme computing: can computers simulate river turbulence? Journal of Hydraulic Engineering 145: 1–13.

    Google Scholar 

  • Steffler, P., & J. Blackburn, 2002. River2D, two-dimensional depth averaged model of river hydrodynamics and fish habitat: introduction to depth averaged modeling and user’s manual. University of Alberta. Edmonton, AB, Canada. http://www.river2d.ualberta.ca/Downloads/documentation/River2D.pdf [Acessed June 03, 2018]

  • Suzuki, F. M., J. B. Dunham, L. G. M. Silva, C. B. M. Alves & P. S. Pompeu, 2017. Factors influencing movements of two migratory fishes within the tailrace of a large Neotropical dam and their implications for hydropower impacts. River Research and Applications 33: 514–523.

    Google Scholar 

  • Teledyne, 2007. WorkHorse Rio Grande ADCP user’s guide. Teledyne RD Instruments, Waterloo.

    Google Scholar 

  • Thorstad, E. B., F. Økland, F. Kroglund & N. Jepsen, 2003. Upstream migration of Atlantic salmon at a power station on the River Nidelva, Southern Norway. Fisheries Management and Ecology 10: 139–146.

    Google Scholar 

  • Tiffan, K. F., T. J. Kock, C. A. Haskell, W. P. Connor & R. K. Steinhorst, 2009. Water velocity, turbulence, and migration rate of subyearling Fall Chinook Salmon in the free-flowing and impounded Snake River. Transactions of the American Fisheries Society 138: 373–384.

    Google Scholar 

  • Tilt, B., Y. Braun & D. He, 2009. Social impacts of large dam projects: a comparison of international case studies and implications for best practice. Journal of Environmental Management 90: S249–S257.

    PubMed  Google Scholar 

  • Timpe, K. & D. Kaplan, 2017. The changing hydrology of a dammed Amazon. Science Advances 3: e1700611.

    PubMed  PubMed Central  Google Scholar 

  • Topcon, 2006. Operator’s manual Topcon HiPer Pro. Topcon positioning systems. Livermore, CA, USA. https://www.servicestopni.com/resources/top-survey/downloads/HiPerPro_om.pdf [Acessed December 10, 2019]

  • Valle, D. & D. Kaplan, 2019. Quantifying the impacts of dams on riverine hydrology under non-stationary conditions using incomplete data and Gaussian copula models. Science of the Total Environment 677: 599–611.

    CAS  Google Scholar 

  • Von Sperling, E., 2012. Hydropower in Brazil: overview of positive and negative environmental aspects. Energy Procedia 18: 110–118.

    Google Scholar 

  • Weber, L. J., R. A. Goodwin, S. Li, J. M. Nestler & J. J. Anderson, 2006. Application of an Eulerian–Lagrangian–Agent method (ELAM) to rank alternative designs of a juvenile fish passage facility. Journal of Hydroinformatics 8: 271–295.

    Google Scholar 

  • White, F. M., 2002. Mecânica dos fluídos. McGraw –Hill, Rio de Janeiro.

  • Williams, J. G., 2008. Mitigating the effects of high-head dams on the Columbia River, USA: Experience from the trenches. Hydrobiologia 241–251.

  • Williams, J. G., G. Armstrong, C. Katopodis, M. Larinier & F. Travade, 2012. Thinking like a fish: A key ingredient for development of effective fish passage facilities at river obstructions. River Research and Applications National Marine Fisheries Service-NOAA Fisheries, Northwest Fisheries Science Center, Seattle, WA, United States 28: 407–417

  • Winemiller, K. O., P. B. McIntyre, L. Castello, E. Fluet-Chouinard, T. Giarrizzo, S. Nam, I. G. Baird, W. Darwall, N. K. Lujan, I. Harrison, M. L. J. Stiassny, R. A. M. Silvano, D. B. Fitzgerald, F. M. Pelicice, A. A. Agostinho, L. C. Gomes, J. S. Albert, E. Baran, M. Petrere, C. Zarfl, M. Mulligan, J. P. Sullivan, C. C. Arantes, L. M. Sousa, A. A. Koning, D. J. Hoeinghaus, M. Sabaj, J. G. Lundberg, J. Armbruster, M. L. Thieme, P. Petry, J. Zuanon, G. T. Vilara, J. Snoeks, C. Ou, W. Rainboth, C. S. Pavanelli, A. Akama, A. V. Soesbergen & L. Saenz, 2016. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351: 128–129.

    CAS  PubMed  Google Scholar 

  • Yi, Y., X. Cheng, Z. Yang, S. Wieprecht, S. Zhang & Y. Wu, 2017. Evaluating the ecological influence of hydraulic projects: a review of aquatic habitat suitability models. Renewable and Sustainable Energy Reviews 68: 748–762.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to: the Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG) for supporting Ludmila Mendes with a scholarship, the Fundação de Amparo a Pesquisa de Minas Gerais (FAPEMIG) for providing a scholarship to Guilherme Souza, and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (CAPES) for supporting Hersília Santos with a post-doctoral fellowship. In addition, the authors thank Companhia Energética de Minas Gerais (CEMIG) for its financial support through projeto “Comportamento de peixes a jusante de barragens, subsídios para a conservação da Ictiofauna”, the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) through the Projeto Universal (456390/2014-6) and the IIHR—Hydroscience & Engineering (The University of Iowa) for the use of its facilities by Hersília Santos. This study was also partly funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (BEX1845/13-6), Brazil (CAPES), Finance Code 001. The authors are grateful to Itamar Gonçalves and Gilbete Santos for support in the field research and in the computational laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmila Moura Moreira Mendes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Ingeborg P. Helland, Michael Power, Eduardo G. Martins & Knut Alfredsen / Perspectives on the environmental implications of sustainable hydro-power

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendes, L.M.M., Souza, G.A.R. & Santos, H.A. Downstream alterations on hydrodynamic fields by hydropower plant operations: implications for upstream fish migration. Hydrobiologia 849, 281–307 (2022). https://doi.org/10.1007/s10750-020-04415-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04415-7

Keywords

Navigation