Skip to main content
Log in

Towards a robust baseline for long-term monitoring of Antarctic coastal benthos

  • TRENDS IN AQUATIC ECOLOGY III
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The Southern Ocean represents one of the world regions most sensitive to warming and there is an urgent need for quantitative data to understand changes in coastal communities. This goal can be achieved through the establishment of permanent monitoring sites and robust sampling designs. In this study, we used an emerging, photogrammetry-based technique to simulate a pilot study and test the efficiency of different sampling schemes (Simple Random—SRS-, Systematic—SyS- and Strip—SS-) for estimating the abundances of megabenthic taxa. For taxa showing an aggregated distribution, we also applied an adaptive cluster sampling (ACS) design. In almost the totality of cases, the best accuracy of estimates was achieved with SyS combined with plots of 0.0625 m2. ACS design gave better performances but required a calibration of both the initial sample size and the threshold value to increase efficiency. The ‘one-size-fits-all’ 1 m2 plot size never emerged as the best in any sampling schemes, hence the previously published literature data can be biased. This study represents a fine-scale reference baseline for the study area and the simulations performed will be pivotal in establishing sound-monitoring programmes with sufficient statistical power to detect significative changes in the Antarctic benthos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Figs. 7

Similar content being viewed by others

References

  • Baddeley, A. J. & R. Turner, 2004. Spatstat: an R package for analyzing spatial point pattens.

  • Baddeley, A., E. Rubak & R. Turner, 2015. Spatial Point Patterns: Methodology and Applications with R. Chapman and Hall/CRC Press, London.

    Book  Google Scholar 

  • Bechtel, J. D., P. Gayle & L. Kaufman, 2006. The return of Diadema antillarum to Discovery Bay: patterns of distribution and abundance. Proceding of 10th International Coral Reef Symposium Vol. 1.

  • Beisel, J. N., P. Usseglio-Polatera, S. Thomas & J. C. Moreteau, 1998. Stream community structure in relation to spatial variation: the influence of mesohabitat characteristics. Hydrobiologia 389(1–3): 73–88.

    Article  Google Scholar 

  • Bernstein, B. B., B. E. Williams & K. H. Mann, 1981. The role of behavioural responses to predators in modifying urchins’ (Strongylocentrotus droebachiensis) destructive grazing and seasonal foraging patterns. Marine Biology 63: 39–49.

    Article  Google Scholar 

  • Birch, C. P., S. P. Oom & J. A. Beecham, 2007. Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecological modelling 206(3–4): 347–359.

    Article  Google Scholar 

  • Brasier, M. J., A. Constable, J. Melbourne-Thomas, R. Trebilco, H. Griffiths, A. Van de Putte & M. Sumner, 2019. Observations and models to support the first Marine Ecosystem Assessment for the Southern Ocean MEASO. Journal of Marine Systems. https://doi.org/10.1016/j.jmarsys.2019.05.008.

    Article  Google Scholar 

  • Brey, T. & J. Gutt, 1991. The genus Sterechinus (Echinodermata: Echinoidea) on the Weddell Sea shelf and slope (Antarctica): distribution, abundance and biomass. Polar Biology 11(4): 227–232.

    Article  Google Scholar 

  • Brey, T., J. Pearse, L. Basch, J. McClintock & M. Slattery, 1995. Growth and production of Sterechinus neumayeri (Echinoidea: Echinodermata) in McMurdo Sound, Antarctica. Marine Biology 124(2): 279–292.

    Article  Google Scholar 

  • Brockington, S., A. Clarke, & A. Chapman, 2001. Seasonality of feeding and nutritional status during the austral winter in the Antarctic sea urchin Sterechinus neumayeri. Marine Biology 139(1): 127–138.

    Article  Google Scholar 

  • Brown, E. K., E. Cox, P. L. Jokiel, S. K. U. Rodgers, W. R. Smith, B. N. Tissot & J. Hultquis, 2004. Development of benthic sampling methods for the Coral Reef Assessment and Monitoring Program CRAMP in Hawai’i. Pacific Science 58(2): 145–158.

    Article  Google Scholar 

  • Cabral, H. N. & A. G. Murta, 2004. Effect of sampling design on abundance estimates of benthic invertebrates in environmental monitoring studies. Marine Ecology Progress Series 276: 19–24.

    Article  Google Scholar 

  • Calizza, E., G. Careddu, S. S. Caputi, L. Rossi & M. L. Costantini, 2018. Time-and depth-wise trophic niche shifts in Antarctic benthos. PLoS ONE 13(3): e0194796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiantore, M., R. Cattaneo-Vietti, L. Elia, M. Guidetti & M. Antonini, 2002. Reproduction and condition of the scallop Adamussium colbecki (Smith 1902), the sea-urchin Sterechinus neumayeri (Meissner, 1900) and the sea-star Odontaster validus Koehler, 1911 at Terra Nova Bay (Ross Sea): different strategies related to inter-annual variations in food availability. Polar Biology 22: 251–255.

    Article  Google Scholar 

  • Chiappone, M., L. M. Rutten, S. L., Miller & D. W. Swanson, 2013. Recent trends (1999–2011) in population density and size of the echinoid Diadema antillarum in the Florida Keys. Florida Scientist, 23–35.

  • Chown, S. L., A. Clarke, C. I. Fraser, S. C. Cary, K. L. Moon & M. A. McGeoch, 2015. The changing form of Antarctic biodiversity. Nature 522(7557): 431–438.

    Article  CAS  PubMed  Google Scholar 

  • Christman, M.C., 2000. A review of quadrat-based sampling of rare, geographically clustered populations. Journal of Agricultural, Biological, and Environmental Statistics, 168–201.

  • Clark, P. J. & F. C. Evans, 1954. Distance to nearest neighbour as a measure of spatial relationships in populations. Ecology 35(4): 445–453.

    Article  Google Scholar 

  • Collard, M., C. De Ridder, B. David, F. Dehairs & P. Dubois, 2015. Could the acid–base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification? Global Change Biology 21(2): 605–617.

    Article  PubMed  Google Scholar 

  • Constable, A. J., J. Melbourne, T. Stuart, P. Corney, K. R. Arrigo, C. Barbraud, D. K. A. Barnes, N. L. Bindoff, P. W. Boyd, A. Brandt, D. P. Costa, A. T. Davidson, H. W. Ducklow, L. Emmerson, M. Fukuchi, J. Gutt, M. A. Hindell, E. E. Hofmann, G. W. Hosie, T. Iida, S. Jacob, N. M. Johnston, S. Kawaguchi, N. Kokubun, P. Koubbi, M.-A. Lea, A. Makhado, R. A. Massom, K. Meiners, M. P. Meredith, E. J. Murphy, S. Nicol, K. Reid, K. Richerson, M. J. Riddle, S. R. Rintoul, W. O. Smith Jr., C. Southwell, J. S. Stark, M. Sumner, K. M. Swadling, K. T. Takahashi, P. N. Trathan, D. C. Welsford, H. Weimerskirch, K. J. Westwood, B. C. Wienecke, D. Wolf-Gladrow, S. W. Wright, J. C. Xavier & P. Ziegler, 2014. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Global Change Biology 20(10): 3004–3025.

    Article  PubMed  Google Scholar 

  • Constable, A. J., D. P. Costa, O. Schofield, L. Newman, E. R. Urban, E. A. Fulton & K. Willaim, 2016. Developing priority variables “ecosystem Essential Ocean Variables” – eEOVs for observing dynamics and change in Southern Ocean ecosystems. Journal of Marine Systems 161: 26–41.

    Article  Google Scholar 

  • Cummings, V. J., J. E. Hewitt, S. F. Thrush, P. M. Marriott, N. J. Halliday & A. M. Norkko, 2018. Linking Ross Sea coastal benthic communities to environmental conditions: documenting baselines in a spatially variable and changing world. Frontiers in Marine Science 5: 232.

    Article  Google Scholar 

  • Dayton, P. K., G. A. Robilliard, R. T. Paine & L. B. Dayton, 1974. Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecological monographs 44(1): 105–128.

    Article  Google Scholar 

  • Dayton, P. K., S. C. Jarrell, S. Kim, P. Ed Parnell, S. F. Thrush, K. Hammerstrom & J. J. Leichter, 2019. Benthic responses to an Antarctic regime shift: food particle size and recruitment biology. Ecological Applications 29(1): e01823.

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Battista, T. & S. A. Gattone, 2004. Multivariate bootstrap confidence regions for abundance vector using data depth. Environmental and Ecological Statistics 11: 355–365.

    Article  Google Scholar 

  • Feehan, C., R. E. Scheibling & J. S. Lauzon-Guay, 2012. Aggregative feeding behavior in sea urchins leads to destructive grazing in a Nova Scotian kelp bed. Marine Ecology Progress Series 444: 69–83.

    Article  Google Scholar 

  • Garnick, E., 1978. Behavioral ecology of Strongylocentrotus droebachiensis (Muller) (Echinodermata: Echinoidea). Oecologia 37: 77–84.

    Article  PubMed  Google Scholar 

  • Gattone, S. A., E. Mohamed & T. Di Battista, 2016a. Adaptive cluster sampling with clusters selected without replacement and stopping rule. Environmental and Ecological Statistics 23: 453–468.

    Article  Google Scholar 

  • Gattone, S. A., E. Mohamed, A. L. Dryver & R. T. Münnich, 2016b. Adaptive cluster sampling for negatively correlated data. Environmetrics 27(2): E103–E113.

    Article  Google Scholar 

  • Ghiglione, C., M. C. Alvaro, M. Cecchetto, S. Canese, R. Downey, A. Guzzi, C. Mazzoli, P. Piazza, H. T. Rapp, A. Sarà & S. Schiaparelli, 2018. Porifera collection of the Italian National Antarctic Museum (MNA), with an updated checklist from Terra Nova Bay (Ross Sea). ZooKeys 758: 137–156.

    Article  Google Scholar 

  • Goldberg, N. A., J. N. Heine & J. A. Brown, 2007. The application of adaptive cluster sampling for rare subtidal macroalgae. Marine Biology 151(4): 1343–1348.

    Article  Google Scholar 

  • Gutt, J., D. Zurell, T. Bracegridle, W. Cheung, M. Clark, P. Convey & H. Griffiths, 2012. Correlative and dynamic species distribution modelling for ecological predictions in the Antarctic: a cross-disciplinary concept. Polar Research 31(1): 11091.

    Article  Google Scholar 

  • Gutt, J., M. Cape, W. Dimmler, L. Filinger, E. Isla, V. Lieb, T. Lundalv & C. Pulcher, 2013. Shifts in Antarctic megabenthic structure after ice-shelf disintegration in the Larsen area east of the Antarctic Peninsula. Polar Biology 36: 895–906.

    Article  Google Scholar 

  • Gutt, J., N. Bertler, T. J. Bracegirdle, A. Buschmann, J. Comiso, G. Hosie & J. C. Xavier, 2015. The Southern Ocean ecosystem under multiple climate change stresses – an integrated circumpolar assessment. Global Change Biology 21: 1434–1453.

    Article  PubMed  Google Scholar 

  • Hill, J. & C. Wilkinson, 2004. Methods for ecological monitoring of coral reefs. Australian Institute of Marine Science, Townsville: 117.

    Google Scholar 

  • IPCC, 2018: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. IPCC, Switzerland, 2018.

  • Kawamata, S., 1998. Effect of wave-induced oscillatory flow on grazing by a subtidal sea urchin Strongylocentrotus nudus (A. Agassiz). Journal of Experimental Marine Biology and Ecology 224: 31–48.

    Article  Google Scholar 

  • Kennicutt, M. C., S. L. Chown, J. J. Cassano, D. Liggett, L. S. Peck, R. Massom & I. Allison, 2015. A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond. Antarctic Science 27: 3–18.

    Article  Google Scholar 

  • Kennicutt, M. C., Y. D. Kim, M. Rogan-Finnemore, S. Anandakrishnan, S. L. Chown, S. Colwell & D. Liggett, 2016. Delivering 21st century Antarctic and Southern Ocean science. Antarctic Science 28: 407–423.

    Article  Google Scholar 

  • Kidawa, A., 2001. Antarctic starfish, Odontaster validus, distinguish between fed and starved conspecifics. Polar Biology 246: 408–410.

    Article  Google Scholar 

  • Kingsford, M. & C. Battershill, 1997. Survey Methodology for Temperate Marine Habitats. Canterbury University Press, Christchurch.

    Google Scholar 

  • Kipson, S., M. Fourt, N. Teixidó, E. Cebrian, E. Casas, E. Ballesteros & J. Garrabou, 2011. Rapid biodiversity assessment and monitoring method for highly diverse benthic communities: a case study of Mediterranean coralligenous outcrops. PloS one 611: e27103.

    Article  CAS  Google Scholar 

  • Lauzon-Guay, J. S. & R. E. Scheibling, 2007. Seasonal variation in movement, aggregation and destructive grazing of the green sea urchin (Strongylocentrotus droebachiensis) in relation to wave action and sea temperature. Marine Biology 151(6): 2109–2118.

    Article  Google Scholar 

  • Lessios, H. A., 1988. Population dynamics of Diadema antillarum (Echinodermata: Echinoidea) following mass mortality in Panama. Marine Biology 99: 515–526.

    Article  Google Scholar 

  • Lessios, H. A., J. D. Cubit, D. R. Robertson, M. J. Shulman, M. R. Parker, S. D. Garrity & S. C. Levings, 1984. Mass mortality of Diadema antillarum on the Caribbean coast of Panama. Coral Reefs 3: 173–182.

    Article  Google Scholar 

  • McClintock, J. B., 1994. Trophic biology of Antarctic shallow-water echinoderms. Marine ecology progress series. Oldendorf 111(1): 191–202.

    Article  Google Scholar 

  • McClintock, J. B., J. S. Pearse & I. Bosch, 1988. Population structure and energetics of the shallow-water Antarctic sea star Odontaster validus in contrasting habitats. Marine Biology 99: 235–246.

    Article  Google Scholar 

  • Meese, R. J. & P. A. Tomich, 1992. Dots on the rocks: a comparison of percent cover estimation methods. Journal of Experimental Marine Biology and Ecology 1651: 59–73.

    Article  Google Scholar 

  • Melbourne-Thomas, J., A. Constable, S. Wotherspoon & B. Raymond, 2013. Testing paradigms of ecosystem change under climate warming in Antarctica. PLoS ONE 82: e55093.

    Article  CAS  Google Scholar 

  • Molloy, P. P., M. Evanson, A. C. Nellas, J. L. Rist, J. E. Marcus, H. J. Koldewey & A. C. J. Vincent, 2013. How much sampling does it take to detect trends in coral-reef habitat using photoquadrat surveys? Aquatic Conservation: Marine and Freshwater Ecosystems 23(6): 820–837.

    Article  Google Scholar 

  • Norkko, A., S. F. Thrush, V. J. Cummings, M. M. Gibbs, N. L. Andrew & J. Norkko, 2007. Trophic structure of coastal Antarctic food webs associated with changes in sea ice and food supply. Ecology 88(11): 2810–2820.

    Article  CAS  PubMed  Google Scholar 

  • Osher, J., 1983. On estimators for the reduced second moment measure of point processes. Statistics 14(1): 63–71.

    Google Scholar 

  • Ouréns, R., J. Freire, J. A. Vilar & L. Fernández, 2014. Influence of habitat and population density on recruitment and spatial dynamics of the sea urchin Paracentrotus lividus: implications for harvest refugia. ICES Journal of Marine Science 71(5): 1064–1072.

    Article  Google Scholar 

  • Palma, A. T., E. Poulin, M. G. Silva, R. B. San Martín, C. A. Muñoz & A. D. Díaz, 2007. Antarctic shallow subtidal echinoderms: is the ecological success of broadcasters related to ice disturbance? Polar Biology 303: 343–350.

    Article  Google Scholar 

  • Pearse, J. S. & A. C. Giese, 1966. Food, reproduction and organic constitution of the common Antarctic echinoid Sterechinus neumayeri Meissner. The Biological Bulletin 130(3): 387–401.

    Article  CAS  PubMed  Google Scholar 

  • Piazza, P., V. J. Cummings, D. Lohrer, S. Marini, P. M. Marriott, F. Menna & S. Schiaparelli, 2018. Divers-operated underwater photogrammetry: applications in the study of Antarctic benthos. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences 42(2): 885–892.

    Article  Google Scholar 

  • Piazza, P., V. J. Cummings, A. Guzzi, I. Hawes, A. Lohrer, S. Marini, S. Kim & S. Schiaparelli, 2019. Underwater photogrammetry in Antarctica: long-term observations in benthic ecosystems and legacy data rescue. Polar Biology 42: 1061–1079.

    Article  Google Scholar 

  • Pooler, P. S. & D. R. Smith, 2005. Optimal sampling design for estimating spatial distribution and abundance of a freshwater mussel population. Journal of the North American Benthological Society 243: 525–537.

    Article  Google Scholar 

  • Ripley, B. D., 1976. The second-order analysis of stationary point processes. Journal of Applied Probability 13: 255–266.

    Article  Google Scholar 

  • Ripley, B. D., 1977. Modelling spatial patterns. Journal of the Royal Statistical Society B 39: 172–212.

    Google Scholar 

  • Ripley, B. D., 1991. Statistical Inference for Spatial Processes. Cambridge University Press, Cambridge.

    Google Scholar 

  • Seber, G. A. F. & M. M. Salehi, 2013. Adaptive Sampling Designs. Springer, Berlin.

    Book  Google Scholar 

  • Smith, R. C., K. S. Baker, W. R. Fraser, E. E. Hofmann, D. M. Karl, J. M. Klinck, L. B. Quetin, B. B. Prezelin, R. M. Ross, W. Z. Trivelpiece & M. Vernet, 1995. The Palmer LTER: a long-term ecological research program at Palmer Station, Antarctica. Oceanography 8: 77–86.

    Article  Google Scholar 

  • Sørensen, L. L., J. A. Coddington & N. Scharff, 2002. Inventorying and estimating subcanopy spider diversity using semiquantitative sampling methods in an Afromontane forest. Environmental Entomology 31(2): 319–330.

    Article  Google Scholar 

  • Statzner, B., J. A. Gore & V. H. Resh, 1998. Monte Carlo simulations of benthic macroinvertebrate populations: estimates using random, stratified, and gradient sampling. Journal of the North American Benthological Society 17(3): 324–337.

    Article  Google Scholar 

  • Thompson, S. K., 1990. Adaptive cluster sampling. Journal of the American Statistical Association 85(412): 1050–1059.

    Article  Google Scholar 

  • Thompson, S. K., 2012. Sampling, 3rd ed. Wiley, New York.

    Book  Google Scholar 

  • Thrush, S. F., J. E. Hewitt, V. J. Cummings, A. Norkko & M. Chiantore, 2010. β-diversity and species accumulation in Antarctic coastal benthos: influence of habitat, distance and productivity on ecological connectivity. PLoS ONE 5: e11899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tin, T., Z. L. Fleming, K. A. Hughes, D. G. Ainley, P. Convey, C. A. Moreno & I. Snape, 2009. Impacts of local human activities on the Antarctic environment. Antarctic Science 21(1): 3–33.

    Article  Google Scholar 

  • Turk, P. & J. J. Borkowski, 2005. A review of adaptive cluster sampling: 1990-2003. Environmental and Ecological Statistics 12: 55–94.

    Article  Google Scholar 

  • Turner, J. A., N. E. Barrand & T. J. Bracegirdle, 2013. Antarctic climate change and the environment: an update. Polar Record 50(3): 237–259.

    Article  Google Scholar 

  • Unger, B. & C. Lott, 1994. In-situ studies on the aggregation behaviour of the sea urchin Sphaerechinus granularis Lam. (Echinidermata: Echinoidea). Echinoderms through time. Proceedings of the Eighth International Echinoderm Conference, Dijon, France.

  • Vadas, R. L., R. W. Elner, P. E. Garwood & I. G. Babb, 1986. Experimental evaluation of aggregation behaviour in the sea urchin Strongylocentrotus droebachiensis. Marine Biology 90(3): 433–448.

    Article  Google Scholar 

  • Wolter, K. M., 2007. Introduction to Variance Estimation. Statistics for Social and Behavioral Sciances, 2nd ed. Springer, New York.

    Google Scholar 

Download references

Acknowledgements

The permanent transects analysed in this paper were established during the Project “ICE-LAPSE” (PNRA 2013/AZ1.16: “Analysis of Antarctic benthos dynamics by using non-destructive monitoring devices and permanent stations”, PI: S. Schiaparelli) funded by the Italian National Antarctic Program. We are grateful to Andrea Peirano (ENEA, La Spezia, Italy) and Ian Hawes (University of Waikato, Waikato, NZ) for video recording and the Comando Subacquei ed Incursori (COMSUBIN) of the Italian Navy for their invaluable help and assistance during the dives. We are indebted to Vonda Cummings (NIWA) for English language check. This paper is a contribution to the SCAR-ANTOS Expert Group (https://www.scar.org/science/antos/home/). The collection of 2017 video recordings was funded by the NZ Ministry of Business, Innovation and Employment. This paper is also contribution of the PNRA project “RosS-BMP” (Ross Sea Benthic Monitoring Program: new non-destructive and machine-learning approaches for the analysis of benthos patterns and dynamics, PNRA18_00263 - B2) and an Italian contribution to the CCAMLR CONSERVATION MEASURE 91-05 (2016) for the Ross Sea region Marine Protected Area, specifically, addressing Annex 91-05/C (“long-term monitoring of benthic ecosystem functions”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Schiaparelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Koen Martens, Sidinei M. Thomaz, Diego Fontaneto & Luigi Naselli-Flores / Emerging Trends in Aquatic Ecology III

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 252 kb) Electronic Supplemental Material 1. Orthophotos of the Tera Nova Bay transects.

10750_2020_4177_MOESM2_ESM.pdf

Supplementary material 2 (PDF 44 kb) Electronic Supplemental Material 2. Figure representing the main steps for plots creation, from the left respectively: a) grid overlapping; b) selection for position; c) clipping on the transect contour; d) final clipped grid. This example is based on transect PNRA_T2 contour and the area selected, corresponding to ~23 m2 is the same for temporal replicates of 2015 and 2017.

Supplementary material 3 (PDF 8 kb)

10750_2020_4177_MOESM4_ESM.r

Supplementary material 4 (R 1 kb) Electronic Supplemental Material 3. Table resuming the sizes (plot area measured in m2) and numbers of plots for each grid overlaid on the studied transects. Inside the brackets are reported the total numbers of plots created over single transects, while outside the final number of plots retained because included in the area effectively overlapping between temporal replicates, in 2015 and 2017 (see ESM_2.pdf, the number of total plots correspond to plots illustrated in box c with different colors, the number of retained plot correspond to yellow plots represented in box d).

Supplementary material 5 (R 1 kb) Electronic Supplemental Material 4. R Markdown for ACS sampling design.

10750_2020_4177_MOESM6_ESM.r

Supplementary material 6 (R 5 kb) Electronic Supplemental Material 5. Boxplot with best performance of each sampling design for each species.

Supplementary material 7 (R 1 kb)

Electronic supplementary material 8 (TXT 1 kb)

Electronic supplementary material 9 (HTML 1077 kb)

Supplementary material 10 (RMD 17 kb)

Supplementary material 11 (R 1 kb)

Supplementary material 12 (R 1 kb)

Supplementary material 13 (R 1 kb)

Supplementary material 14 (R 1 kb)

Supplementary material 15 (R 1 kb)

Supplementary material 16 (R 1 kb)

Supplementary material 17 (PDF 439 kb)

Supplementary material 18 (PDF 444 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piazza, P., Gattone, S.A., Guzzi, A. et al. Towards a robust baseline for long-term monitoring of Antarctic coastal benthos. Hydrobiologia 847, 1753–1771 (2020). https://doi.org/10.1007/s10750-020-04177-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04177-2

Keywords

Navigation