Skip to main content
Log in

Habitat preferences of Micrasterias arcuata (Desmidiales, Viridiplantae) in wetlands from central Brazil: an allometric study

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The green alga Micrasterias arcuata is commonly found in the periphyton of slightly acidic ponds and wet grasslands of central Brazil. We used M. arcuata complex as a model system for evaluation of the following questions: (a) Is there any relation between morphological characteristics of M. arcuata populations and ecological features of the sites? (b) Can the observed plasticity be explained by an allometric scaling relationship leading to differential distribution of the morphotypes among different habitats (ponds and wet grasslands)? (c) Is there any surface-to-volume ratio (S:V) scaling that can be explained as adaptive response to ecological characteristics of sites? A total of 50 individual semicells of M. arcuata were photographed from ten natural populations, yielding a 500 objects dataset. Individuals from ponds were morphologically different from the ones in the wet grasslands, presenting bigger cells, but also with higher S:V. The eventual surface loss usually associated to bigger sizes was compensated by more elaborated cells, yielding positive allometry of the S:V ratio scaling. Our data support the idea that such differences in cell morphology are an adaptation to environmental conditions, especially desiccation stress favoring cells with lower S:V and higher isoperimetric quotient in the wet grasslands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from ArcGIS software (Esri, 2012)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • APHA, 2005. Standard methods for the examination of water and wastewater, 21st ed. American Public Health Association, Washington, DC.

    Google Scholar 

  • Bailey, J. W., 1851. Microscopical observations made in South Carolina, Georgia and Florida. Smithsonian Contributions to Knowledge 2: 1–48.

    Google Scholar 

  • Bestová, H., F. Munoz, P. Svoboda, P. Škaloud & C. Violle, 2018. Ecological and biogeographical drivers of freshwater green algae biodiversity: from local communities to large-scale species pools of desmids. Oecologia 186: 1017–1030.

    Article  Google Scholar 

  • Bicudo, C. E. M. & F. Gil-Gil, 2003. Different morphological expressions or taxonomical entities of Micrasterias arcuata (Desmidiales, Zygnemaphyceae). Biologia 58: 645–655.

    Google Scholar 

  • Bicudo, C. E. M. & L. Sormus, 1982. Desmidiofórula paulista, 2: gênero Micrasterias C. Agardh ex Ralfs. Bibliotheca Phycologica 57: 1–230.

    Google Scholar 

  • Broly, P., C. Devigne & J.-L. Deneubourg, 2015. Body shape in terrestrial isopods: a morphological mechanism to resist desiccation? Journal of Morphology 276: 1283–01289.

    Article  Google Scholar 

  • Brook, A. J., 1981. The Biology of Desmids. Botanical Monographs 16. Blackwell, Oxford.

    Google Scholar 

  • Cianciaruso, M. V. & M. A. Batalha, 2008. A year in a Cerrado wet grassland: a non-seasonal island in a seasonal savanna environment cerrado vegetation. Brazilian Journal of Biology 68: 495–501.

    Article  CAS  Google Scholar 

  • Clarke, K. R., 1993. Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology 18: 117–143.

    Article  Google Scholar 

  • Coesel, P. F. M., 1982. Structural characteristics and adaptations of desmid communities. Journal of Ecolology 70: 163–177.

    Article  Google Scholar 

  • Coesel, P. F. M. & J. Meester, 2007. Desmids of the Lowlands. KNNV, Princeton.

    Book  Google Scholar 

  • Esri, 2012, Topographic [basemap]. Scale Not Given. Simple Map of the World. https://www.arcgis.com/home/webmap/viewer.html?webmap=0493b877e54c4308adc038191b0a85d9. Searched on June 05 2019.

  • Fonseca, B. M. & L. M. B. Estrela, 2015. Desmídias perifíticas de cinco lagoas do Distrito Federal, Brasil: II – Gêneros Euastrum Ehrenberg ex Ralfs, Micrasterias C. Agardh ex Ralfs e Triploceras Bailey. Hoehnea 42: 399–417.

    Article  Google Scholar 

  • Fonseca, B. M., L. Mendonça-Galvão, F. D. R. Sousa, L. M. A. Elmoor-Loureiro, M. B. Gomes-e-Souza, R. L. Pinto, P. Petracco, R. C. Oliveira & E. J. Lima, 2018. Biodiversity in pristine wetlands of central Brazil: a multi-taxonomic approach. Wetlands 38: 145–156.

    Article  Google Scholar 

  • Förster, K., 1964. Desmidiaceen aus Brasilien. 2. Teil: Bahia, Goyaz, Piauhy und Nord-Brasilien. Hydrobiologia XXIII: 321–505.

    Article  Google Scholar 

  • Förster, K., 1969. Amazonische Desmidieen. 1. Teil: areal Santarém. Amazoniana 1–2: 5–232.

    Google Scholar 

  • González Garraza, G., L. Burdman & G. Mataloni, 2019. Desmids (Zygnematophyceae, Streptophyta) community drivers and potential as a monitoring tool in South American peat bogs. Hydrobiologia. https://doi.org/10.1007/s10750-019-3895-x.

    Article  Google Scholar 

  • Guiry, M. D., 2019. AlgaeBase. World-wide electronic publication. In Guiry, M. D, Guiry, G. M. 2019. National University of Ireland, Galway. http://www.algaebase.org. Searched on 18 January 2019.

  • Gunz, P. & P. Mitteroecker, 2013. Semilandmarks: a method for quantifying curves and surfaces. Hystrix, the Italian Journal of Mammalogy 24: 103–109.

    Google Scholar 

  • Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1–9.

    Google Scholar 

  • Huxley, J. S., 1932. Problems of Relative Growth. The Dial Press, New York.

    Google Scholar 

  • Kindt, R. & R. Coe, 2005. Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre, Nairobi.

    Google Scholar 

  • Klingenberg, C. P., M. Barluenga & A. Meyer, 2002. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution 56(10): 1909–1920.

    Article  Google Scholar 

  • Lenzenweger, R., 1996. Desmidiaceenflora Von Österreich. Biblioteca Phycologica 101: 1–162.

    Google Scholar 

  • Musso, C., H. S. Miranda, A. M. V. M. Soares & S. Loureiro, 2014. Biological activity in Cerrado soils: evaluation of vegetation, fire and seasonality effects using the “bait-lamina test”. Plant Soil 383: 49–58.

    Article  CAS  Google Scholar 

  • Nemergut, D. R., S. K. Schmidt, T. Fukami, S. P. O’Neill, T. M. Bilinski, L. F. Stanish, J. E. Knelman, J. L. Darcy, R. C. Lynch, P. Wickey & S. Ferrenberg, 2013. Patterns and processes of microbial community assembly. Microbiology and Molecular Biology Reviews 77: 342–356.

    Article  Google Scholar 

  • Nemjová, K., J. Neustupa, J. Št’astný, P. Škaloud & J. Veselá, 2011. Species concept and morphological differentiation of strains traditionally assigned to Micrasterias truncata. Phycological Research 59: 208–220.

    Article  Google Scholar 

  • Neustupa, J., 2016. Static allometry of unicellular green algae: scaling of cellular surface area and volume in the genus Micrasterias (Desmidiales). Journal of Evolutionary Biology 29: 292–305.

    Article  CAS  Google Scholar 

  • Neustupa, J. & J. Šťastný, 2006. The geometric morphometric study of Central European species of the genus Micrasterias (Zygnematophyceae, Viridiplantae). Preslia 78: 253–263.

    Google Scholar 

  • Neustupa, J., J. Šťastný & L. Hodač, 2008. Temperature-related phenotypic plasticity in the green microalga Micrasterias rotata. Aquatic Microbial Ecology 51: 77–86.

    Article  Google Scholar 

  • Neustupa, J., K. Černá & J. Šťastný, 2011. The effects of aperiodic desiccation on the diversity of benthic desmid assemblages in a lowland peat bog. Biodiversity and Conservation 20: 1695–1711.

    Article  Google Scholar 

  • Neustupa, J., J. Veselá & J. Šťastný, 2013. Differential cell size structure of desmids and diatoms in the phytobenthos of peatlands. Hydrobiologia 709: 159–171.

    Article  CAS  Google Scholar 

  • Okie, J. G., 2013. General models for the spectra of surface area scaling strategies of cells and organisms: fractality, geometric dissimilitude, and internalization. The American Naturalist 181: 421–439.

    Article  Google Scholar 

  • Oliveira, I. B., C. W. N. Moura & C. E. M. Bicudo, 2009. Micrasterias C. Agardh ex Ralfs (Zygnemaphophyceae) de duas Áreas de Proteção Ambiental da planície litorânea do norte da Bahia. Brasil. Revista Brasileira de Botânica 32: 213–232.

    Google Scholar 

  • Osserman, R., 1978. The isoperimetric inequality. Bulletin of the American Mathematical Society 84: 1182–1238.

    Article  Google Scholar 

  • Potapova, M. & P. B. Hamilton, 2007. Morphological and ecological variation within the Achnanthidium minutissimum (Bacillariophyceae) species complex. Journal of Phycology 43: 561–575.

    Article  Google Scholar 

  • Prescott, G. W., H. T. Croasdale & W. C. Vinyard, 1977. A Synopsis of North American desmids. University of Nebraska Press, Lincoln.

    Google Scholar 

  • R Core Development Team, 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Reynolds, C. S., 2006. The Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Ribeiro, I. O., R. V. Andreoli, M. T. Kayano, T. R. Sousa, A. S. Medeiros, R. H. M. Godoi, A. F. L. Godoi, S. Duvoisin Junior, S. T. Martin & R. A. F. Souza, 2018. Biomass burning and carbon monoxide patterns in Brazil during the extreme drought years of 2005, 2010, and 2015. Environmental Pollution 243: 1008–1014.

    Article  CAS  Google Scholar 

  • Rohlf, F. J., 2015. TPS Series. Department of Ecology and Evolution, State University of New York at Stony Brook, New York. http://life.bio.sunysb.edu/morph/.

  • Růžička, J., 1981. Die Desmidiaceen Mitteleuropas. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.

    Google Scholar 

  • Santos, M. A., C. E. M. Bicudo & C. W. N. Moura, 2018. Taxonomic notes on the species of the genus Micrasterias (Desmidiaceae, Conjugatophyceae) from the Metropolitan Region of Salvador, Bahia, Brazil. Check List 14: 1027–1045.

    Article  Google Scholar 

  • Savriama, Y., J. Neustupa & P. Klingenberg, 2010. Geometric morphometrics of symmetry and allometry in Micrasterias rotate (Zygnemaphyceae, Viridiplantae). Nova Hedwigia 136: 43–54.

    Google Scholar 

  • Shingleton, A., 2010. Allometry: the study of biological scaling. Nature Education Knowledge 3: 2.

    Google Scholar 

  • Silva, F. A. M., E. D. Assad & A. E. Evangelista, 2008. Caracterização climática do bioma Cerrado. In Sano, S. M., S. M. P. Almeida & J. F. Ribeiro (eds.), Cerrado: Ecologia e Flora. Embrapa Informação Tecnológica, Brasília: 69–87.

    Google Scholar 

  • Silva, L. C. R., G. D. Vale, R. F. Haidar & L. S. S. Sternberg, 2010. Deciphering earth mound origins in central Brazil. Plant and Soil 336: 3–14.

    Article  CAS  Google Scholar 

  • Škaloud, P., K. Nemjová, J. Veselá, K. Černá & J. Neustupa, 2011. A multilocus phylogeny of the desmid genus Micrasterias (Streptophyta): evidence for the accelerated rate of morphological evolution in protists. Molecular Phylogenetics and Evolution 61: 933–943.

    Article  Google Scholar 

  • Smith, R. J., 2009. Use and misuse of the reduced major axis for line-fitting. American Journal of Physical Anthropology 140: 476–486.

    Article  Google Scholar 

  • Zelditch, M. L., D. L. Swiderski & H. D. Sheets, 2012. Geometric Morphometrics for Biologists. Academic Press, Cambridge.

    Google Scholar 

Download references

Acknowledgements

This study was sponsored by the Research Foundation of the Federal District (Fundação de Apoio à Pesquisa do Distrito Federal, FAPDF) (Award number 0193.001384/2016). We thank the Catholic University of Brasília (UCB) for the logistic support for the biological collections; the Chico Mendes Institute for Biodiversity Conservation (ICMBio) for support in the Brasília National Park and in the Chapada dos Veadeiros National Park; the Brazilian Army for its assistance in the Formosa Instructional Camp; the administration staffs of RECOR and ESECAE for their support within these areas. The authors also thank to Cristielly de Oliveira Silva Machado (UCB) for her help with the pictures, and to Eti Ester Levi (Aarhus University, Denmark) for her support during the final revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bárbara Medeiros Fonseca.

Additional information

Handling editor: Luigi Naselli-Flores

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonseca, B.M., Feijó, L.M. & Neustupa, J. Habitat preferences of Micrasterias arcuata (Desmidiales, Viridiplantae) in wetlands from central Brazil: an allometric study. Hydrobiologia 842, 143–156 (2019). https://doi.org/10.1007/s10750-019-04032-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04032-z

Keywords

Navigation