Skip to main content
Log in

Environmental filters predict the trait composition of fish communities in reservoir cascades

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Dam construction alters flow regimes and can change the composition of aquatic communities. Using data from three Brazilian hydrographic basins, we tested the hypothesis that reservoir cascades act as environmental filters for fish traits. This dataset included information on different environmental variables and fish traits (diet, migration, fecundation, parental care, position in the water column, and body size), and we used multivariate analysis (partial RLQ) to quantify the relationships between environmental variables, species abundance and traits. We found that the abundance of migratory species declined towards downstream reservoirs, which tend to be smaller and less turbid with a shorter water residence time than upstream reservoirs. We also found evidence of an association between reservoir age and the domination of fish communities by small-sized species with parental care, external fecundation, and benthic habits. Our findings suggest that particular fish traits are selected for across reservoir cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agostinho, A. A. & H. F. Júlio Jr., 1999. Peixes da bacia do alto rio Paraná. In Lowe-McConnell, R. H. (ed.), Estudos ecológicos de comunidades de peixes tropicais. EDUSP, São Paulo.

    Google Scholar 

  • Agostinho, A. A., L. E. Miranda, L. M. Bini, L. C. Gomes, S. M. Thomaz & H. I. Suzuki, 1999. Patterns of colonization in neotropical reservoirs, and prognoses on aging. In Tundisi, J. G. & M. Straskraba (eds), Theoretical reservoir ecology and its applications. International Institute of Ecology (IIE), Leiden, Netherlands.

    Google Scholar 

  • Agostinho, A. A., L. C. Gomes, S. Veríssimo & E. K. Okada, 2004. Flood regime, dam regulation and fish in the Upper Paraná river: effects on assemblage attributes, reproduction and recruitment. Reviews in Fish Biology and Fisheries 14: 11–19.

    Article  Google Scholar 

  • Agostinho, A. A., L. C. Gomes & F. M. Pelicice, 2007a. Ecologia e manejo de recursos pesqueiros em reservatórios do Brasil. Eduem, Maringá.

    Google Scholar 

  • Agostinho, A. A., E. E. Marques, C. S. Agostinho, D. A. Almeida, R. J. Oliveira & J. B. M. Rodrigues, 2007b. Fish ladder of Lajeado Dam: migration on one way routes? Neotropical Ichthyology 5: 121–130.

    Article  Google Scholar 

  • Agostinho, A. A., L. C. Gomes, N. C. L. Santos, J. C. G. Ortega & F. M. Pelicice, 2016. Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management. Fisheries Research 173: 26–36.

    Article  Google Scholar 

  • ANEEL, Agência Nacional de Energia Elétrica (Brasil), 2002. Atlas de energia elétrica do Brasil/Agência Nacional de Energia Elétrica. ANEEL, Brasília.

  • Barbosa, F. A. R., J. Padisák, E. L. G. Espindola, G. Borics & O. Rocha, 1999. The cascading Reservoir Continuum Concept (CRCC) and its application to the River Tietê basin, São Paulo State, Brazil. In Tundisi, J. G. & M. Straskaba (eds), Theoretical reservoir ecology and its applications. International Institute of Ecology, Brazilian Academy of Sciences and Backhuys Publishers, São Carlos.

    Google Scholar 

  • Brind’Amour, A., D. Boisclair, S. Dray & P. Legendre, 2011. Relationships between species feeding traits and environmental conditions in fish communities: a three-matrix approach. Ecological Applications 21: 363–377.

    Article  PubMed  Google Scholar 

  • Britski, H. A., Y. Sato, A. B. S. Rosa, 1984. Manual de identificação de peixes da região de Três Marias (com chaves de identificação para os peixes da bacia do São Francisco), Brasília, câmara dos deputados/CODEVASF.

  • Castello, L. & M. N. Macedo, 2015. Large-scale degradation of Amazonian freshwater ecosystems. Global Change Biology 22: 990–1007.

    Article  PubMed  Google Scholar 

  • Castro, R. M. C., L. Casatti, H. F. Santos, K. M. Ferreira, A. C. Ribeiro, R. C. Benine, M. Carvalho, A. C. Ribeiro, T. X. Abreu, F. A. Bockmann, G. Z. Pelição, R. Stopiglia & F. Langeani, 2003. Estrutura e composição da ictiofauna de riachos do rioParanapanema, Sudeste e Sul do Brasil. Biota Neotropica 3: 1–6.

    Article  Google Scholar 

  • Cheng, F., W. Li, L. Castello, B. R. Murphy & S. Xie, 2015. Potential effects of dam cascade on fish: lessons from the Yangtze River. Reviews in Fish Biology and Fisheries 25: 569–585.

    Article  Google Scholar 

  • Coleman, B. D., M. A. Mares, M. R. Willig & Y. H. Hsieh, 1982. Randomness, area, and species richness. Ecology 63: 1121–1133.

    Article  Google Scholar 

  • Dala-Corte, R. B., X. Giam, J. D. Olden, F. G. Becker, T. F. Guimarães & A. S. Melo, 2016. Revealing the pathways by which agricultural land-use affects stream fish communities in South Brazilian grasslands. Freshwater Biology 61: 1921–1934.

    Article  Google Scholar 

  • Dolédec, S., D. Chessel, C. J. F. Ter Braak & S. Champely, 1996. Matching species traits to environmental variables: a new three-table ordination method. Environmental and Ecological Statistics 3: 143–166.

    Article  Google Scholar 

  • Dray, S. & A. B. Dufour, 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22: 1–20.

    Article  Google Scholar 

  • Froese, R. & D. Pauly,2014. FISHBASE 2014. World Wide Web electronic publication. [available on http://www.fishbase.org [Acessed February 2015].

  • Hill, M. O. & A. J. E. Smith, 1976. Principal component analysis of taxonomic data with multi-state discrete characters. Taxon 25: 249–255.

    Article  Google Scholar 

  • Hoeinghaus, D. J., A. A. Agostinho, L. C. Gomes, F. M. Pelicice, E. K. Okada, J. D. Latini, E. A. L. Kashiwaqui & K. O. Winemiller, 2009. Effects of river impoundment on ecosystem services of large tropical rivers: embodied energy and market value of artisanal fisheries. Conservation Biology 23: 1222–1231.

    Article  PubMed  Google Scholar 

  • Hyslop, E. P., 1980. Stomach contents analysis – A review of methods and their application. Journal of Fish Biology, Malden 17: 411–429.

    Article  Google Scholar 

  • Jung, V., C. Violle, C. Mondy, L. Hoffmann & S. Muller, 2010. Intraspecific variability and trait-based community Assembly. Journal of Ecology 98: 1134–1140.

    Article  Google Scholar 

  • Laughlin, D. C., 2014. Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecology Letters 17: 771–784.

    Article  PubMed  Google Scholar 

  • Legendre, P. & L. Legendre, 2012. Numerical ecology. Elsevier, Amsterdam.

    Google Scholar 

  • Lenhardt, M., G. Markovic & Z. Gacic, 2009. Decline in the index of biotic integrity of the fish assemblage as a response to reservoir aging. Water Resources Management 23: 1713–1723.

    Article  Google Scholar 

  • Lees, A. C., C. A. Peres, P. M. Fearnside, M. Schneider & J. A. S. Zuanon, 2016. Hydropower and the future of Amazonian biodiversity. Biodiversity and Conservation 25: 451–466.

    Article  Google Scholar 

  • Liermann, C. R., C. Nilsson, J. Robertson & R. Y. Ng, 2012. Implications of dam obstruction for global freshwater fish diversity. BioScience 62: 539–548.

    Article  Google Scholar 

  • Maack, R., 2002. Geografia física do Estado do Paraná. 3rd ed. Imprensa Oficial. Curitiba.

  • McGill, B. J., B. Enquist, E. Weiher & M. Westoby, 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178–185.

    Article  Google Scholar 

  • Merritt, R. W. & K. W. Cummins, 1996. An introduction to the aquatic insects of North America. Kendall/Hunt Publishing Company, Iowa: 548p.

    Google Scholar 

  • Miranda, L. E., M. Habrat & S. Miyazono, 2008. Longitudinal gradients along a reservoir cascade. Transactions of the American Fisheries Society 137: 1851–1865.

    Article  Google Scholar 

  • Miranda, L. E. & D. J. Dembkowski, 2015. Evidence for serial discontinuity in the fish community of a heavily impounded river. River Research and Applications 32: 1187–1195.

    Article  Google Scholar 

  • Ney, J. J., 1996. Oligotrophication and its discontents: effects of reduced nutrient loading on reservoir fisheries. In Miranda, L. E. & D. R. Devries (eds) Multidimensional approaches to reservoir fisheries management. American Fisheries Society Symposium, Bethesda.

  • Pease, A. A., A. A. González-Díaz, R. Rodiles-Hernández & K. O. Winemiller, 2012. Functional diversity and trait-environment relationships of stream fish assemblages in a large tropical catchment. Freshwater Biology 57(5): 1060–1075.

    Article  Google Scholar 

  • Pease, A. A., J. M. Taylor, K. O. Winemiller & R. S. King, 2015. Ecoregional, catchment, and reach-scale environmental factors shape functional-trait structure of stream fish assemblages. Hydrobiologia 753: 265–283.

    Article  Google Scholar 

  • Pelicice, F. M., P. S. Pompeu & A. A. Agostinho, 2015. Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish and Fisheries 16: 697–715.

    Article  Google Scholar 

  • Petts, G., 1980. Long-term consequences of upsetram impoundment. Environmental Conservation 7: 325–332.

    Article  Google Scholar 

  • R Core Team, 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

  • Ribeiro, M. D., F. B. Teresa & L. Casatti, 2016. Use of functional traits to assess changes in stream fish assemblages across a habitat gradient. Neotropical Ichthyology 14(1): e140185.

    Article  Google Scholar 

  • Rodríguez, M. A. & W. M. Lewis, 1997. Structure of fish assemblages along environmental gradients in floodplain lakes of the Orinoco River. Ecological Monographs 67: 109–128.

    Article  Google Scholar 

  • Sampaio, T., 1944. Relatório dos rios Itapetininga e Paranapanema. Revista do Instituto Geológico 2: 222–271.

    Google Scholar 

  • Santos, N. C. L., H. S. Santana, R. M. Dias, H. L. F. Borges, V. F. Melo, W. Severi, L. C. Gomes & A. A. Agostinho, 2016. Distribution of benthic macroinvertebrates in a tropical reservoir cascade. Hydrobiologia 765: 265–275.

    Article  Google Scholar 

  • Stein, A., K. Gerstner & H. Kreft, 2014. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters 17: 866–880.

    Article  PubMed  Google Scholar 

  • Tejerina-Garro, F. L., R. Fortin & M. A. Rodríguez, 1998. Fish community structure in relation to environmental variation in floodplain lakes of the Araguaia River, Amazon Basin. Environmental Biology of Fishes 51: 399–410.

    Article  Google Scholar 

  • Ward, J. V. & J. A. Stanford, 1983. The serial discontinuity concept of lotic ecosystems. In Fontaine, T. D. & S. M. Bartell (eds), Dynamics of lotic ecosytems. Ann Arbor Sciences, Ann Arbor: 29–42.

    Google Scholar 

  • Ward, J. V. & J. A. Stanford, 1995. The serial discontinuity concept of lotic ecosystems: extending the model to floodplain rivers. Regulated Rivers 10: 159–168.

    Article  Google Scholar 

  • Webb, C. T., J. A. Hoeting, G. M. Ames, M. I. Pyne & N. LeRoy Poff, 2010. A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecology Letters 13: 267–283.

    Article  PubMed  Google Scholar 

  • Wesuls, D., J. Oldeland & S. Dray, 2012. Disentangling plant trait responses to livestock grazing from spatio-temporal variation: the partial RLQ approach. Journal of Vegetation Science 23: 98–113.

    Article  Google Scholar 

  • Winemiller, K. O., 1989. Patterns of variation in life history among South American fishes in seasonal environments. Oecologia 81: 225–241.

    Article  PubMed  Google Scholar 

  • Winemiller, K. O., P. B. McIntyre, L. Castello, E. Fluet-Chouinard, T. Giarrizzo, S. Nam, I. G. Baird, W. Darwall, N. K. Lujan, I. Harrison, M. L. J. Stiassny, R. A. M. Silvano, D. B. Fitzgerald, F. M. Pelicice, A. A. Agostinho, L. C. Gomes, J. S. Albert, E. Baran, M. Petrere Jr., C. Zarfl, M. Mulligan, J. P. Sullivan, C. C. Arantes, L. M. Sousa, A. A. Koning, D. J. Hoeinghaus, M. Sabaj, J. G. Lundberg, J. Armbruster, M. L. Thieme, P. Petry, J. Zuanon, G. T. Vilara, J. Snoeks, C. Ou, W. Rainboth, C. S. Pavanelli, A. Akama, A. van Soesbergen & L. Sáenz, 2016. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Basin-scale planning is needed to minimize impacts in mega-diverse rivers. Science 351: 128–129.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Taise Miranda Lopes for contributing to the manuscript and Eduardo Ribeiro da Cunha, Geovani Moresco, and Matheus Baumgartner for preparing the schematic design. We also thank Stéphane Dray for kindly assisting with the fourth-corner analysis and the reviewers whose comments improved the final version of this manuscript. We express our appreciation to the Hydroelectric Company of São Francisco (CHESF), the Apollonius Salles Foundation for Educational Development (FADURPE), and PRONEX-MCT/CNPq for financial support, and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the graduate student fellowship. AAA, LCG, and LMB receive productivity grants from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natália Carneiro Lacerda dos Santos.

Additional information

Handling editor: André Padial

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, N.C.L., de Santana, H.S., Ortega, J.C.G. et al. Environmental filters predict the trait composition of fish communities in reservoir cascades. Hydrobiologia 802, 245–253 (2017). https://doi.org/10.1007/s10750-017-3274-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3274-4

Keywords

Navigation