Skip to main content
Log in

Effects of newt chemical cues on the distribution and foraging behavior of stream macroinvertebrates

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Many amphibians possess noxious or toxic substances for self defense. These compounds have been characterized largely as chemical defenses, but may promote ecological and evolutionary processes. The California newt, Taricha torosa, possesses a potent neurotoxin, tetrodotoxin (TTX), which serves as a chemical defense, chemical cue to conspecifics, and selection pressure that has selected for evolved resistance in a predator. However, the potential effects of TTX upon the broader community and on behavior, in general, have been overlooked. Field assays conducted during the newt breeding season indicate that the macroinvertebrate community responds to adult newt chemical cues by altering foraging behavior. In these assays, significantly fewer macroinvertebrates were found in experimental areas with enclosed newts relative to enclosures with a non-predatory amphibian. Laboratory bioassays showed that dragonfly nymphs (Anax junius) reduced predatory behavior and moved less in the presence of adult newt chemical cues. When exposed to TTX, nymph mean angular velocities were reduced four fold and mean velocity magnitude was reduced threefold relative to controls. Overall, these results support the hypothesis that chemical stimuli from predators, and TTX specifically, can shape species interactions at lower trophic levels and potentially affect community organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrams, P. A., 1983. Arguments in favor of higher-order interactions. American Naturalist 121: 887–891.

    Article  Google Scholar 

  • Abrams, P. A., 1995. Implications of dynamically variable traits for identifying, classifying and measuring direct and indirect effects in ecological communities. American Naturalist 146: 112–134.

    Article  Google Scholar 

  • Armsworth, C. G., D. A. Bohan, S. J. Powers, D. M. Glen & W. O. C. Symondson, 2005. Behavioural responses by slugs to chemicals from a generalist predator. Animal Behaviour 69: 805–811.

    Article  Google Scholar 

  • Arnott, S. A., D. M. Neil & A. D. Ansell, 1998. Tail-flip mechanism and size-dependent kinematics of escape swimming in the brown shrimp Crangon crangon. Journal of Experimental Biology 201: 1771–1784.

    PubMed  Google Scholar 

  • Baker, R. L., C. M. Elkin & H. A. Brennan, 1999. Aggressive interactions and risk of fish predation for larval damselflies. Journal of Insect Behavior 12: 213–223.

    Article  Google Scholar 

  • Brodie III, E. D., C. R. Feldman, C. T. Hanifin, J. E. Motychak, D. G. Mulcahy, B. L. Williams & E. D. Brodie Jr, 2005. Parallel arms races between garter snakes and newts involving tetrodotoxin as the phenotypic interface of coevolution. Journal of Chemical Ecology 31: 343–356.

    Article  CAS  PubMed  Google Scholar 

  • Brodie Jr, E. D., B. J. Ridenhour & E. D. Brodie III, 2002. The evolutionary response of predators to dangerous prey: hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts. Evolution 56: 2067–2082.

    Article  PubMed  Google Scholar 

  • Bucciarelli, G. M., A. Li, L. B. Kats & D. B. Green, 2014. Quantifying tetrodotoxin levels in the California newt using a non-destructive sampling method. Toxicon 80: 87–93.

    Article  CAS  PubMed  Google Scholar 

  • Burks, R. L. & D. M. Lodge, 2002. Cued in: advances and opportunities in freshwater chemical ecology. Journal of Chemical Ecology 28: 1901–1917.

  • Camacho, F. A. & R. W. Thacker, 2013. Predator cues alter habitat use by the amphipod Hyalella azteca (Saussure). Freshwater Science 32: 1148–1154.

  • Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading tropic interactions and lake productivity. BioScience 35: 634–639.

    Article  Google Scholar 

  • Casas, J. & O. Dangles, 2010. Physical ecology of fluid flow sensing in arthropods. Annual Review of Entomology 55: 505–520.

    Article  CAS  PubMed  Google Scholar 

  • Castellanos, I., P. Barbosa, I. Zuria, T. Tammaru & M. C. Christman, 2011. Contact with caterpillar hairs triggers predator-specific defensive responses. Behavioral Ecology 22: 1020–1025.

    Article  Google Scholar 

  • Catterall, W. A., 1980. Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annual Review of Pharmacology and Toxicology 20: 15–43.

    Article  CAS  PubMed  Google Scholar 

  • Catterall, W. A., C. S. Morrow, J. W. Daly & G. B. Brown, 1981. Binding of batrachotoxinin A 20-alpha-benzoate to a receptor site associated with sodium channels in synaptic nerve ending particles. Journal of Biological Chemistry 256: 8922–8927.

    CAS  Google Scholar 

  • Cestele, S., Y. Qu, J. C. Rogers, H. Rochat, T. Scheuer & W. A. Catterall, 1998. Voltage sensor-trapping: enhanced activation of sodium channels by β-scorpion toxin bound to the S3–S4 loop in domain II. Neuron 21: 919–931.

    Article  CAS  PubMed  Google Scholar 

  • Chivers, D. P., J. M. Kiesecker, M. T. Anderson, E. L. Wildly & A. R. Blaustein, 1996. Avoidance response of a terrestrial salamander (Ambystoma macrodactylum) to chemical alarm cues. Journal of Chemical Ecology 22: 1709–1716.

    Article  CAS  PubMed  Google Scholar 

  • Chivers, D. P. & R. J. F. Smith, 1998. Chemical alarm signaling in aquatic predator/prey interactions: a review and prospectus. Ecoscience 5: 338–352.

    Google Scholar 

  • Crossland, M. R., T. Haramura, A. A. Salim, R. J. Capon & R. Shine, 2012. Exploiting intraspecific competitive mechanisms to control invasive cane toads (Rhinella marina). Proceedings of the Royal Society B 279: 3436–3442.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dahl, J., 1998. The impact of vertebrate and invertebrate predators on a stream benthic community. Oecologia 117: 217–226.

    Article  Google Scholar 

  • Daly, J. W., 1995. The chemistry of poisons in amphibian skin. Proceedings of the National Academy of Sciences 92: 9–13.

    Article  CAS  Google Scholar 

  • Dechraoui, M. Y., J. Naar, S. Pauillac & A. M. Legrand, 1999. Ciguatoxins and brevetoxins, neurotoxic polyether compounds active on sodium channels. Toxicon 37: 125–143.

    Article  CAS  PubMed  Google Scholar 

  • Dodson, S. I., T. A. Crowl, B. L. Peckarsky, L. B. Kats, A. P. Covich & J. M. Culp, 1994. Non-visual communication in freshwater benthos: an overview. Journal of the North American Benthological Society 268-282.

  • Du, Y., Y. Nomura, G. Satar, Z. Hu, R. Nauen, S. Y. He, B. S. Zhorov & K. Dong, 2013. Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel. Proceedings of the National Academy of Sciences 110: 11785–11790.

    Article  CAS  Google Scholar 

  • Elkin, C. M. & R. L. Baker, 2000. Lack of preference for low-predation-risk habitats in larval damselflies explained by costs of intraspecific interactions. Animal Behaviour 60: 511–521.

    Article  PubMed  Google Scholar 

  • Elliott, S. A., L. B. Kats & J. A. Breeding, 1993. The use of conspecific chemical cues for cannibal avoidance in California newts (Taricha torosa). Ethology 95: 186–192.

    Article  Google Scholar 

  • Endler, J. A., 1986. Defense against predators. In Feder, M. E. & G. V. Lauder (eds), Predator prey relationships: perspectives and approaches from the study of lower vertebrates. University of Chicago Press, Chicago IL: 109–134.

    Google Scholar 

  • Ferrari, M. C., B. D. Wisenden & D. P. Chivers, 2010. Chemical ecology of predator–prey interactions in aquatic ecosystems: a review and prospectus. Canadian Journal of Zoology 88: 698–724.

    Article  Google Scholar 

  • Flowers, M. A. & B. M. Graves, 1997. Juvenile toads avoid chemical cues from snake predators. Animal Behaviour 53: 641–646.

    Article  Google Scholar 

  • Gall, B. G. & E. D. Brodie Jr, 2009. Behavioral avoidance of injured conspecific and predatory chemical stimuli by larvae of the aquatic caddisfly Hesperophylax occidentalis. Canadian Journal of Zoology 87: 1009–1015.

    Article  Google Scholar 

  • Gall, B. G., A. N. Stokes, S. S. French, E. A. Schlepphorst, E. D. Brodie III & E. D. Brodie Jr, 2011. Tetrodotoxin levels in larval and metamorphosed newts (Taricha granulosa) and palatability to predatory dragonflies. Toxicon 57: 978–983.

  • Gusovsky, F., D. P. Rossignol, E. T. McNeal & J. W. Daly, 1988. Pumiliotoxin B binds to a site on the voltage-dependent sodium channel that is allosterically coupled to other binding sites. Proceedings of the National Academy of Sciences 85: 1272–1276.

    Article  CAS  Google Scholar 

  • Hadfield, M. G. & V. J. Paul, 2001. Natural chemical cues for settlement and metamorphosis of marine invertebrate larvae. In McClintock, J. B. & B. J. Baker (eds), Marine Chemical Ecology. CRC, Boca Raton FL: 431–461.

    Chapter  Google Scholar 

  • Hare, J. F. & T. Eisner, 1993. Pyrrolizidine alkaloid deters ant predators of Utetheisa ornatrix eggs: effects of alkaloid concentration, oxidation state, and prior exposure of ants to alkaloid-laden prey. Oecologia 96: 9–18.

    Article  Google Scholar 

  • Hawlena, D., H. Kress, E. R. Dufresne & O. J. Schmitz, 2011. Grasshoppers alter jumping biomechanics to enhance escape performance under chronic risk of spider predation. Functional Ecology 25: 279–288.

    Article  Google Scholar 

  • Hay, M. E., 2009. Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Annual Review of Marine Science 1: 193–212.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hay, M. E. & J. Kubanek, 2002. Community and ecosystem level consequences of chemical cues in the plankton. Journal of Chemical Ecology 28: 2001–2016.

    Article  CAS  PubMed  Google Scholar 

  • Hopkins, G. R., B. G. Gall & E. D. Brodie, 2011. Ontogenetic shift in efficacy of antipredator mechanisms in a top aquatic predator, Anax junius (Odonata: Aeshnidae). Ethology 117: 1093–1100.

    Article  Google Scholar 

  • Jacobsen, H. P. & O. B. Stabell, 2004. Antipredator behaviour mediated by chemical cues: the role of conspecific alarm signalling and predator labelling in the avoidance response of a marine gastropod. Oikos 104: 43–50.

    Article  Google Scholar 

  • Juliano, S. A. & M. E. Gravel, 2002. Predation and the evolution of prey behavior: an experiment with tree hole mosquitoes. Behavioral Ecology 13: 301–311.

    Article  Google Scholar 

  • Kats, L. B. & L. M. Dill, 1998. The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5: 361–394.

    Google Scholar 

  • Kats, L. B., J. W. Petranka & A. Sih, 1988. Antipredator defenses and the persistence of amphibian larvae with fishes. Ecology 69: 1865–1870.

    Article  Google Scholar 

  • Kerby, J. L. & L. B. Kats, 1998. Modified interactions between salamander life stages caused by wildfire-induced sedimentation. Ecology 79: 740–745.

    Article  Google Scholar 

  • Kiesecker, J. M., D. P. Chivers & A. R. Blaustein, 1996. The use of chemical cues in predator recognition by western toad tadpoles. Animal Behaviour 52: 1237–1245.

    Article  Google Scholar 

  • Koch, N., B. Lynch & R. Rochette, 2007. Trade-off between mating and predation risk in the marine snail, Littorina plena. Invertebrate Biology 126: 257–267.

    Article  Google Scholar 

  • Krieger, J. & H. Breer, 1999. Olfactory reception in invertebrates. Science 286: 720–723.

    Article  CAS  PubMed  Google Scholar 

  • Li, W. I., F. W. Berman, T. Okino, F. Yokokawa, T. Shioiri, W. H. Gerwick & T. T. Murray, 2001. Antillatoxin is a marine cyanobacterial toxin that potently activates voltage-gated sodium channels. Proceedings of the National Academy of Sciences 98: 7599–7604.

    Article  CAS  Google Scholar 

  • Lima, S. L. & L. M. Dill, 1990. Behavioral decisions made under the risk of predation: a review and prospectus. Canadian Journal of Zoology 68: 619–640.

    Article  Google Scholar 

  • Mathis, A. & F. Vincent, 2000. Differential use of visual and chemical cues in predator recognition and threat-sensitive predator-avoidance responses by larval newts (Notophthalmus viridescens). Canadian Journal of Zoology 78: 1646–1652.

    Article  CAS  Google Scholar 

  • McClintock, J. B. & J. B. Baker, 2001. Marine Chemical Ecology. CRC, Boca Raton, FL.

    Book  Google Scholar 

  • McIntosh, A. R. & B. L. Peckarsky, 1996. Differential behavioural responses of mayflies from streams with and without fish to trout odour. Freshwater Biology 35: 141–148.

    Article  Google Scholar 

  • Menge, B. A., 2000. Top-down and bottom-up community regulation in marine rocky intertidal habitats. Journal of Experimental Marine Biology and Ecology 250: 257–289.

    Article  PubMed  Google Scholar 

  • Miyasaka, H. & S. Nakano, 2001. Drift dispersal of mayfly nymphs in the presence of chemical and visual cues from diurnal drift-and nocturnal benthic-foraging fishes. Freshwater Biology 46: 1229–1237.

    Article  Google Scholar 

  • Naddafi, R. & L. G. Rudstam, 2013. Predator-induced behavioural defences in two competitive invasive species: the zebra mussel and the quagga mussel. Animal Behaviour 86: 1275–1284.

    Article  Google Scholar 

  • Narahashi, T., J. M. Frey, K. S. Ginsburg & M. L. Roy, 1992. Sodium and GABA-activated channels as the targets of pyrethroids and cyclodienes. Toxicology Letters 64: 429–436.

    Article  PubMed  Google Scholar 

  • Nyström, P. & K. Åbjörnsson, 2000. Effects of fish chemical cues on the interactions between tadpoles and crayfish. Oikos 88: 181–190.

    Article  Google Scholar 

  • Olivera, B. M., J. Rivier, C. Clark, C. A. Ramilo, G. P. Corpuz, F. C. Abogadie, E. E. Mena, S. R. Woodward, D. R. Hillyard & L. J. Cruz, 1990. Diversity of Conus neuropeptides. Science 249: 257–263.

    Article  CAS  PubMed  Google Scholar 

  • Paine, R. T., 1966. Food web complexity and species diversity. American Naturalist 103: 65–75.

    Article  Google Scholar 

  • Pawlik, J. W., 1992. Chemical ecology of the settlement of benthic marine invertebrates. Oceanography and Marine Biology: annual Review 30: 273–335.

    Google Scholar 

  • Peckarsky, B. L., 1980. Predator–prey interactions between stoneflies and mayflies: behavioral observations. Ecology 61: 932–943.

    Article  Google Scholar 

  • Petranka, J. W. & K. Fakhoury, 1991. Evidence of a chemically-mediated avoidance response of ovipositing insects to blue-gills and green frog tadpoles. Copeia 1991(1): 234–239.

    Article  Google Scholar 

  • Petranka, J. W., L. B. Kats & A. Sih, 1987. Predator–prey interactions among fish and larval amphibians: use of chemical cues to detect predatory fish. Animal Behaviour 35: 420–425.

    Article  Google Scholar 

  • Pohnert, G., M. Steinke & R. Tollrian, 2007. Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. Trends in Ecology & Evolution 22: 198–204.

    Article  Google Scholar 

  • Relyea, R. A., 2000. Trait-mediated indirect effects in larval anurans: reversing competition with the threat of predation. Ecology 81: 2278–2289.

    Article  Google Scholar 

  • Roberts, J. A. & G. W. Uetz, 2005. Information content of female chemical signals in the wolf spider, Schizocosa ocreata: male discrimination of reproductive state and receptivity. Animal Behaviour 70: 217–223.

    Article  Google Scholar 

  • Roelofs, W. L., W. Liu, G. Hao, G. H. Jiao, A. P. Rooney & C. E. Linn Jr, 2002. Evolution of moth sex pheromones via ancestral genes. Proceedings of the National Academy of Sciences 99: 13621–13626.

    Article  CAS  Google Scholar 

  • Schmitz, O. J., A. P. Beckerman & K. M. O’Brien, 1997. Behaviorally mediated trophic cascades: effects of predation risk on food web interactions. Ecology 78: 1388–1399.

    Article  Google Scholar 

  • Schneider, J., S. Worischka, C. Hellmann, J. Benndorf & C. Winkelmann, 2014. Flexibility in feeding periodicity of a grazing mayfly in response to different concentrations of benthivorous fish. Limnologica-Ecology and Management of Inland Waters 45: 24-32.

  • Schulte, L. M., J. Yeager, R. Schulte, M. Veith, P. Werner, L. A. Beck & S. Lötters, 2011. The smell of success: choice of larval rearing sites by means of chemical cues in a Peruvian poison frog. Animal Behaviour 81: 1147–1154.

    Article  Google Scholar 

  • Scrimgeour, G. J. & J. M. Culp, 1994. Foraging and evading predators: the effect of predator species on a behavioural trade-off by a lotic mayfly. Oikos 69: 71–79.

    Article  Google Scholar 

  • Scrimgeour, G. J., J. M. Culp & K. J. Cash, 1994. Anti-predator responses of mayfly larvae to conspecific and predator stimuli. Journal of the North American Benthological Society 13: 299–309.

    Article  Google Scholar 

  • Sih, A., 1987. Predator and prey lifestyles: an evolutionary and ecological overview. In Kerfoot, W. C. & A. Sih (eds), Predation: direct and indirect impacts on aquatic communities. University Press of New England, Hanover, NH.

    Google Scholar 

  • Sih, A., P. Crowley, M. McPeek, J. Petranka & K. Strothmeier, 1985. Predation, competition, and prey communities: a review of field experiments. Annual Review of Ecology and Systematics 16: 269–312.

    Article  Google Scholar 

  • Skelly, D. K., 1992. Field evidence for a cost of behavioral antipredator response in a larval amphibian. Ecology 73: 704–708.

    Article  Google Scholar 

  • Song, J. H., K. Nagata, H. Tatebayashi & T. Narahashi, 1996. Interactions of tetramethrin, fenvalerate and DDT at the sodium channel in rat dorsal root ganglion neurons. Brain Research 708: 29–37.

    Article  CAS  PubMed  Google Scholar 

  • Stebbins, R. C. & S. M. McGinnis, 2013. Field guide to amphibians and reptiles of California. University of California Press, Berkeley, CA.

    Google Scholar 

  • Stowe, M. K., J. H. Tumlinson & R. R. Heath, 1987. Chemical mimicry: bolas spiders emit components of moth prey species sex pheromones. Science 236: 964–967.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan, A. M., K. L. Miedema, A. G. Hiers, J. S. Hummelman & J. A. Damcott, 2011. Antipredator responses of larval black flies (Simulium vittatum ss) to chemical stimuli from damaged conspecifics. The American Midland Naturalist 166: 75–84.

    Article  Google Scholar 

  • Summers, K., 1999. The effects of cannibalism on Amazonian poison frog egg and tadpole deposition and survivorship in Heliconia axil pools. Oecologia 119: 557–564.

    Article  Google Scholar 

  • Tamburri, M. N., C. M. Finelli, D. S. Wethey & R. K. Zimmer-Faust, 1996. Chemical induction of larval settlement behavior in flow. The Biological Bulletin 191: 367–373.

    Article  CAS  Google Scholar 

  • Tollrian, R. & C. D. Harvell, 1999. The ecology and evolution of inducible defenses. Princeton University Press, Princeton, New Jersey, USA.

    Google Scholar 

  • Trussell, G. C., P. J. Ewanchuk & M. D. Bertness, 2003. Trait-mediated effects in rocky intertidal food chains: predator risk cues alter prey feeding rates. Ecology 84: 629–640.

    Article  Google Scholar 

  • Turner, A. M., R. J. Bernot & C. M. Boes, 2000. Chemical cues modify species interactions: the ecological consequences of predator avoidance by freshwater snails. Oikos 88: 148–158.

    Article  CAS  Google Scholar 

  • Twitty, V. C., 1966. Of scientists and salamanders. Freeman, San Franciso, CA.

    Google Scholar 

  • Weissburg, M. J. & R. K. Zimmer-Faust, 1993. Life and death in moving fluids: hydrodynamic effects on chemosensory-mediated predation. Ecology 74: 1428–1443.

    Article  Google Scholar 

  • Weller, S. J., N. L. Jacobson & W. E. Conner, 1999. The evolution of chemical defences and mating systems in tiger moths (Lepidoptera: Arctiidae). Biological Journal of the Linnean Society 68: 557–578.

    Article  Google Scholar 

  • Werner, E. E. & B. R. Anholt, 1996. Predator-induced behavioral indirect effects: consequences to competitive interactions in anuran larvae. Ecology 71: 157–169.

    Article  Google Scholar 

  • Werner, E. E. & S. D. Peacor, 2003. A review of trait-mediated indirect interactions in ecological communities. Ecology 84: 1083–1100.

    Article  Google Scholar 

  • Wisenden, B. D., B. D. Chivers & R. J. F. Smith, 1997. Learned recognition of predation risk by Enallagma damselfly larvae (Odonata, Zygoptera) on the basis of chemical cues. Journal of Chemical Ecology 23: 137–151.

    Article  CAS  Google Scholar 

  • Wissinger, S. & J. McGrady, 1993. Intraguild predation and competition between larval dragonflies: direct and indirect effects of shared prey. Ecology 74: 207–218.

    Article  Google Scholar 

  • Wood, O. R., S. Hanrahan, M. Coetzee, L. L. Koekemoer & B. D. Brooke, 2010. Cuticle thickening associated with pyrethroid resistance in the major malaria vector Anopheles funestus. Parasites and Vectors 3: 67.

    Article  PubMed Central  PubMed  Google Scholar 

  • Yotsu-Yamashita, M., Y. H. Kim, S. C. Dudley, G. Choudhary, A. Pfahnl, Y. Oshima & J. W. Daly, 2004. The structure of zetekitoxin AB, a saxitoxin analog from the Panamanian golden frog Atelopus zeteki: a potent sodium-channel blocker. Proceedings of the National Academy of Sciences 101: 4346–4351.

    Article  CAS  Google Scholar 

  • Zimmer, R. K., D. W. Schar, R. P. Ferrer, P. J. Krug, L. B. Kats & W. C. Michel, 2006. The scent of danger: tetrodotoxin (TTX) as an olfactory cue of predation risk. Ecological Monographs 76: 585–600.

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the support of R. Honeycutt, Chair of the Natural Science Division, Pepperdine University. We thank Debbie Sharpton and Jo Kitz with Mountains Restoration Trust for their enthusiasm and permission to conduct our research in the Cold Creek Preserve. Wendy Willis assisted with identification of macroinvertebrates and we appreciate her help. Many thanks to Ryan Ferrer for providing experimental materials. Comments from three anonymous reviewers helped to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary M. Bucciarelli.

Additional information

Handling editor: Nicholas R. Bond

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bucciarelli, G.M., Kats, L.B. Effects of newt chemical cues on the distribution and foraging behavior of stream macroinvertebrates. Hydrobiologia 749, 69–81 (2015). https://doi.org/10.1007/s10750-014-2146-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2146-4

Keywords

Navigation