Skip to main content
Log in

The influence of intrinsic and extrinsic factors on developmental parameters and their relationships in the marine isopod Idotea linearis (Crustacea)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

An Erratum to this article was published on 04 April 2014

Abstract

Developmental and reproductive parameters and their relationships were studied in the marine isopod Idotea linearis. We hypothesized that (1) the temporal patterns of molting and growth undergo complex and sex-specific changes with age as well as with the onset of sexual maturation, and that (2) sexual maturation (and dependent parameters) is controlled by the photoperiod. Both males and females were singly cultured in the laboratory at two alternative photoperiods (constant long and short days, respectively) from hatching until death. Males molted and grew throughout their life, showing a steady increase in stage duration and body size with each molt. Females, in contrast, showed much more complex modifications in molt chronology due to reproductive demands. There was some variability in the stage number, when females reached maturity. Reaching maturity early in the succession of molts was associated with smaller body size at maturity, smaller size of broods, but higher average number of broods per lifetime. Post-puberty molts in females occurred without further growth, and successive broods did not differ in size. The photoperiod strongly affected sexual maturation (and thus in turn molting and growth patterns) in females, while males remained completely unaffected by the photo regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aiken, D. E., 1969. Photoperiod, endocrinology and the crustacean molt cycle. Science 164: 149–155.

    Article  CAS  PubMed  Google Scholar 

  • Anger, K., 1983. Temperature and the larval development of Hyas araneus L. (Decapoda: Majidae); extrapolation of laboratory data to field conditions. Journal of Experimental Marine Biology and Ecology 69: 203–215.

    Article  Google Scholar 

  • Armitage, K. B., A. L. Buikema Jr. & N. J. Willems, 1973. The effect of photoperiod on organic constituents and molting of the crayfish Orconectes nais (Faxon). Comparative Biochemistry and Physiology Part A: Physiology 44: 431–456.

    Article  CAS  Google Scholar 

  • Baeza-Rojano, E., J. M. Guerra- García, M. Pilar Cabezas & I. Pacios, 2011. Life history of Caprella grandimana (Crustacea: Amphipoda) reared under laboratory conditions. Marine Biology Research 7: 85–92.

    Article  Google Scholar 

  • Becker-Carus, C., 1967. Die Bedeutung der Tageslänge für die Ausbildung des Geschlechts bei Armadillidium vulgare (Isopoda). Crustaceana 13: 137–150.

    Article  Google Scholar 

  • Beermann, J. & A. K. Purz, 2013. Comparison of life history parameters in coexisting species of the genus Jassa (Amphipoda, Ischyroceridae). Journal of Crustacean Biology 33: 784–792.

    Article  Google Scholar 

  • Benayoun, G. & S. W. Fowler, 1980. Long-term observations on the moulting frequency of the shrimp Lysmata seticaudata. Marine Biology 59: 219–233.

    Article  Google Scholar 

  • Bertin, A. & F. Cezilly, 2003. Sexual selection, antennae length and the mating advantage of large males in Asellus aquaticus. Journal of Evolutionary Biology 16: 698–707.

    Article  CAS  PubMed  Google Scholar 

  • Borowsky, B., 1987. Laboratory studies of the pattern of reproduction of the isopod crustacean Idotea baltica. Fishery Bulletin 85: 377–380.

    Google Scholar 

  • Bulnheim, H. P., 1967. Über den Einfluß der Photoperiode auf die Geschlechtsrealisation bei Gammarus duebeni. Helgoländer Wissenschaftliche Meeresuntersuchungen 15: 69–83.

    Article  Google Scholar 

  • Charmantier-Daures, M. & G. Vernet, 2004. Moulting, autonomy, and regeneration. In Forest, J. & J. C. Vaupel Klein (eds), The Crustacea (revised and updated from Traité de Zoologie). Brill, Leiden: 161–255.

    Google Scholar 

  • Cobb, J. S., G. R. Tamm & D. Wang, 1982. Behavioral mechanisms influencing molt frequency in the American lobster Homarus americanus Milne Edwards. Journal of Experimental Marine Biology and Ecology 62: 185–200.

    Article  Google Scholar 

  • Crisp, D. J. & B. Patel, 1969. Environmental control of the breeding of three boreo-arctic cirripedes. Marine Biology 2: 283–295.

    Article  Google Scholar 

  • Dunn, A. M., J. C. Hogg, A. Kelly & M. J. Hatcher, 2005. Two cues for sex determination in Gammarus duebeni: adaptive variation in environmental sex determination? Limnology and Oceanography 50: 346–353.

    Article  Google Scholar 

  • Engkvist, R., T. Malm & S. Tobiasson, 2000. Density dependent grazing effects of the isopod Idotea baltica Pallas on Fucus vesiculosus L. in the Baltic Sea. Aquatic Ecology 34: 253–260.

    Article  Google Scholar 

  • Fowler, S. W., L. F. Small & S. Kečkeš, 1971. Effects of temperature and size on molting of euphausiid crustaceans. Marine Biology 11: 45–51.

    Article  Google Scholar 

  • Gambardella, C., S. M. Guarino, C. Dinardo & M. de Nicola, 1997. Effect of photoperiod on embryogenesis and growth rate in Idotea baltica (Isopoda). Journal of Crustacean Biology 17: 412–416.

    Article  Google Scholar 

  • Guler, Y., S. Short, P. Kile & A. T. Ford, 2012. Integrating field and laboratory evidence for environmental sex determination in the amphipod, Echinogammarus marinus. Marine Biology 159: 2885–2890.

    Google Scholar 

  • Hartnoll, R. G., 1982. Growth. In Abele, L. G. & D. E. Bliss (eds), The Biology of Crustacea, Vol. 2., Embryology, morphology and genetics Academic Press, New York: 111–196.

    Google Scholar 

  • Hartnoll, R. G., 1985. Growth, sexual maturity and reproductive output. In Wenner, A. M. (ed), Crustacean Issues 3. Factors in Adult Growth. AA Balkema, Rotterdam: 101–128.

    Google Scholar 

  • Hartnoll, R. G., 2001. Growth in Crustacea – twenty years on. Hydrobiologia 449: 111–122.

    Article  Google Scholar 

  • Healy, B. & M. O’Neill, 1984. The life cycle and population dynamics of Idotea pelagica and I. granulosa (Isopoda: Valvifera) in south–east Ireland. Journal of the Marine Biological Association of the United Kingdom 64: 21–33.

    Article  Google Scholar 

  • Holdich, D. M., 1968. Reproduction, growth and bionomics of Dynamene bidentata (Crustacea: Isopoda). Journal of Zoology 156: 137–153.

    Article  Google Scholar 

  • Hosono, T., 2011. Effect of temperature on growth and maturation pattern of Caprella mutica (Crustacea, Amphipoda): does the temperature-size rule function in caprellids? Marine Biology 158: 363–370.

    Article  Google Scholar 

  • Jormalainen, V. & S. Merilaita, 1995. Female resistance and duration of mate-guarding in three aquatic peracarids (Crustacea). Behavioural Ecology and Sociobiology 36: 43–48.

    Article  Google Scholar 

  • Jormalainen, V., S. Merilaita & J. Tuomi, 1995. Differential predation on sexes affects colour polymorphism of the isopod Idotea baltica (Pallas). Biological Journal of the Linnean Society 55: 45–68.

    Article  Google Scholar 

  • Kinne, O., 1953. Zur Biologie und Physiologie von Gammarus duebeni Lillj., II.: Über die Häutungsfrequenz, ihre Abhängigkeit von Temperatur und Salzgehalt, sowie über ihr Verhalten bei isoliert gehaltenen und amputierten Versuchstieren. Zoologische Jahrbücher: Abteilung für allgemeine Zoologie und Physiologie der Tiere 64: 183–206.

    Google Scholar 

  • Kinne, O., 1954. Zur Biologie und Physiologie von Gammarus duebeni Lillj., VIII.: Die Bedeutung der Kopulation für Eiablage und Häutungsfrequenz. Biologisches Zentralblatt 73: 190–202.

    Google Scholar 

  • Kinne, O., 1960. Gammarus salinus – Einige Daten über den Umwelteinfluss auf Wachstum, Häutungsfolge, Herzfrequenz und Eientwicklungsdauer. Crustaceana 1: 208–218.

    Article  Google Scholar 

  • Kroer, N., 1989. Life cycle characteristics and reproductive patterns of Idotea spp. (Isopoda) in the Limfjord, Denmark. Ophelia 30: 63–74.

    Article  Google Scholar 

  • Kruschwitz, L. G., 1978. Environmental factors controlling reproduction of the amphipod Hyalella azteca. Proceedings of the Oklahoma Academy of Science 58: 16–21.

    Google Scholar 

  • McQueen, D. J. & C. G. H. Steel, 1980. The role of photoperiod and temperature in the initiation of reproduction in the terrestrial isopod Oniscus asellus Linnaeus. Canadian Journal of Zoology 58: 235–240.

    Article  Google Scholar 

  • Miller, C. B., J. K. Johnson & D. R. Heinle, 1977. Growth rules in the marine copepod genus Acartia. Limnology and Oceanography 22: 326–335.

    Article  Google Scholar 

  • Mocquart, J. P., G. Besse, P. Juchault, J. J. Legrand, J. Maissiat, G. Martin & J. L. Picaud, 1976. Durée des cycles de mues chez les femelles de l’oniscoide Porcellio dilatatus Brandt suivant leur état sexuel et les conditions d’élevage. Bulletin d’Écologie 7: 297–314.

    Google Scholar 

  • Montagna, M. C., 2011. Effect of temperature on the survival and growth of freshwater prawns Macrobrachium borellii and Palaemonetes argentinus (Crustacea, Palaemonidae). Iheringia, Série Zoologia 101: 233–238.

    Article  Google Scholar 

  • Naylor, C. & J. Adams, 1987. Sexual dimorphism, drag constraints and male performance in Gammarus duebeni (Amphipoda). Oikos 48: 23–27.

    Article  Google Scholar 

  • Naylor, C., J. Adams & P. Greenwood, 1988. Population dynamics and adaptive sexual strategies in a brackish water crustacean, Gammarus duebeni. Journal of Animal Ecology 57: 493–507.

    Article  Google Scholar 

  • Naylor, E., 1972. British marine isopods. Synopsis of the British Fauna No. 3. Academic Press, London.

  • Oh, C. W. & R. G. Hartnoll, 2000. Effects of food supply on the growth and survival of the common shrimp, Crangon crangon (Linnaeus, 1758) (Decapoda, Caridea). Crustaceana 73: 83–99.

    Article  Google Scholar 

  • Pöckl, M., 1992. Effects of temperature, age and body size on moulting and growth in the freshwater amphipods Gammarus fossarum and G. roeseli. Freshwater Biology 27: 211–225.

    Article  Google Scholar 

  • Ridley, M. & D. J. Thompson, 1979. Size and mating in Asellus aquaticus (Crustacea: Isopoda). Zeitschrift für Tierpsychologie 51: 380–397.

    Article  Google Scholar 

  • Salama, A. & R. G. Hartnoll, 1992. Effects of food and feeding regime on the growth and survival of the prawn Palaemon elegans Rathke, 1837 (Decapoda, Caridea). Crustaceana 63: 11–22.

    Article  Google Scholar 

  • Salemaa, H., 1987. Herbivory and microhabitat preferences of Idotea spp. (Isopoda) in the northern Baltic Sea. Ophelia 27: 1–15.

    Google Scholar 

  • Somers, K. M., 1991. Characterizing size-specific fecundity in crustaceans. In Wenner, A. M. & A. Kuris (eds), Crustacean Egg Production. Crustacean Issues 7. Balkema, Rotterdam: 357–378.

    Google Scholar 

  • Souty, C., A. Chentoufi, J. P. Mocquart & P. Juchault, 1988. Seasonal reproduction in the terrestrial isopod Armadillidium vulgare (Latreille): geographical variability and genetic control of the response to photoperiod and temperature. Invertebrate Reproduction and Development 14: 131–151.

    Article  Google Scholar 

  • Steele, D. H. & V. J. Steele, 1972. The biology of Jaera spp. (Crustacea, Isopoda) in the northern Atlantic. 1. Jaera ischiosetosa. Canadian Journal of Zoology 50: 205–211.

    Article  Google Scholar 

  • Steele, V. J. & D. H. Steele, 1986. The influence of photoperiod on the timing of reproductive cycles in Gammarus species (Crustacea, Amphipoda). American Zoologist 26: 459–467.

    Google Scholar 

  • Verhoef, G. D., C. M. Austin, P. L. Jones & F. Stagnitti, 1998. Effect of temperature on molt increment and intermolt period of a juvenile Australian fresh-water crayfish, Cherax destructor. Journal of Crustacean Biology 18: 673–679.

    Article  Google Scholar 

  • Ward, P. I., 1984. Gammarus pulex control their molt timing to secure mates. Animal Behaviour 32: 927.

    Article  Google Scholar 

  • Watt, P. J., 1994. Parental control of sex ratio in Gammarus duebeni, an organism with environmental sex determination. Journal of Evolutionary Biology 7: 177–187.

    Article  Google Scholar 

  • Weeks, S. C., V. Markus & S. Alvarez, 1997. Notes on the life history of the clam shrimp, Eulimnadia texana. Hydrobiologia 359: 191–197.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Michael Janke for his meticulous and patient technical assistance in culture maintenance and data collection. We gratefully acknowledge the comments of two anonymous reviewers who have contributed to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz-Dieter Franke.

Additional information

Handling editor: Vasilis Valavanis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franke, HD., Beermann, J. The influence of intrinsic and extrinsic factors on developmental parameters and their relationships in the marine isopod Idotea linearis (Crustacea). Hydrobiologia 732, 197–212 (2014). https://doi.org/10.1007/s10750-014-1846-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1846-0

Keywords

Navigation