Skip to main content
Log in

Seasonal weather effects on hydrology drive the metabolism of non-forest lowland streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Weather variations change stream hydrological conditions, affecting the stream function. A seasonal study in three well-conserved first-order Pampean streams was carried out to test the hypothesis that rainfalls are the main drivers of whole-stream metabolism, through their effects on hydrology. We estimated the stream metabolism and metabolic contribution of six relevant communities (angiosperms, macroalgae, seston, epiphyton, epipelon, and hyporheos) during late spring, summer, and winter and examined the relation between gross primary production (GPP) and photosynthetic active radiation (PAR). Our results showed that the decrease in available streambed light due to the dissolved organic carbon after rainfalls was the main factor related to the decrease in the ecosystem and community metabolisms. For instance, GPP oscillated from ~10 gO2 m−2 d−1 in early spring (low flows) to ~3 gO2 m−2 d−1 in summer (high flows). Ecosystem respiration (ER) was less sensitive than GPP to rainfalls due to the increase of hyporheic respiration. Rainfalls also caused a significant loss of downstream macroalgal biomass. At a day scale, the high PAR of late spring and summer saturated GPP during the afternoon, and the low temperature of winter mornings constrained GPP. Hence, the knowledge of weather changes is key to understanding the main hydrological drivers of stream function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acuña, V., A. Giorgi, I. Muñoz, U. Uehlinger & S. Sabater, 2004. Flow extremes and benthic organic matter shape the metabolism of a headwater Mediterranean stream. Freshwater Biology 49: 960–971.

    Article  Google Scholar 

  • Acuña, V., C. Vilches & A. Giorgi, 2011. As productive and slow as a stream can be – the metabolism of a Pampean stream. Journal of North American Benthological Society 30(1): 71–83.

    Article  Google Scholar 

  • APHA, 1998. Standard Methods for the Examination of Water and Wastewater. American Public Health Association Inc., Washington DC

  • Aragón, R., E. G. Jobbágy & E. F. Viglizzo, 2011. Surface and groundwater dynamics in the sedimentary plains of the Western Pampas (Argentina). Ecohydrology 4(3): 433–447.

    Article  Google Scholar 

  • Bevington, P. R. & D. K. Robinson, 2002. Data Reduction and Error Analysis for the Physical Sciences, 3rd ed. McGraw-Hill, New York.

    Google Scholar 

  • Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

    Article  Google Scholar 

  • Bott, T. L., 2006. Primary productivity and community respiration. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology, 2nd ed. Academic Press, Amsterdam: 663–688.

    Google Scholar 

  • Bott, T. L., J. T. Brock, C. E. Cushing, S. V. Gregory, D. King & R. C. Petersen, 1978. A comparison of methods for measuring primary productivity and community respiration in streams. Hydrobiologia 60: 3–12.

    Article  CAS  Google Scholar 

  • Chapra, S. C. & D. M. Di Toro, 1991. Delta method for estimating primary production, respiration, and reaeration in streams. Journal of Environmental Engineering 117: 640–655.

    Article  CAS  Google Scholar 

  • De Loe, R., 2008. Floodplain management in Canada: overview and prospects. Canadian Geographer 44(4): 355–368.

    Article  Google Scholar 

  • Demars, B. O. L., J. R. Manson, J. S. Ólafsson, G. M. Gíslason, R. Gudmundsdóttir, G. Woodward, J. Reiss, D. E. Pichler, J. J. Rasmussen & N. Friberg, 2011. Temperature and the metabolic balance of streams. Freshwater Biology 56: 1106–1121.

    Article  Google Scholar 

  • Dodds, W. K., J. R. Jones & E. B. Welch, 1998. Suggested classification of stream trophic state: distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Research 32: 1455–1462.

    Article  CAS  Google Scholar 

  • Elmore, H. L. & W. F. West, 1961. Effect of water temperature on stream reaeration. Journal of the Sanitary Engineering 87: 59–71.

    Google Scholar 

  • Elosegui, A. & J. Diez, 2009. La estructura física de los lechos fluviales. In Elosegi, A. & S.Sabater (eds), Conceptos y técnicas en ecología fluvial. Rubes editorial: 70–84.

  • Feijoó, C. S. & R. J. Lombardo, 2007. Baseline water quality and macrophyte assemblages in Pampean streams: a regional approach. Water Research 41: 1399–1410.

    Article  PubMed  Google Scholar 

  • Feijoó, C. S. & M. Menéndez, 2009. La biota de los ríos: los macrófitos. In: Elosegi, A. & S. Sabater (eds), Conceptos y técnicas en ecología fluvial. Rubes editorial: 243–251.

  • Fellows, C. S., H. M. Valett & C. N. Dahm, 2001. Whole stream metabolism in two montane streams: contribution of the hyporheic zone. Limnology and Oceanography 46: 523–531.

    Article  Google Scholar 

  • Fisher, S. G., 1983. Succession in streams. In Barnes, J. R. & G. W. Minshall (eds), Stream Ecology: Application and Testing of General Ecological Theory. Plenum Press, New York: 7–27.

    Google Scholar 

  • Fisher, S. G., L. J. Gray, N. B. Grimm & D. E. Busch, 1982. Temporal succession in a desert stream ecosystem following flash flooding. Ecological Monographs 52: 93–110.

    Article  CAS  Google Scholar 

  • Galat, D. L., L. H. Fredrickson, D. Humburg, K. J. Bataille, J. R. Bodie, J. Dohrenwend, G. Gelwicks, J. E. Havel, D. Helmers, J. B. Hooker, J. R. Jones, M. F. Knowlton, J. Kubisiak, J. Mazourek, A. C. McColpin, R. B. Renken & R. D. Semlitsch, 1998. Flooding to restore connectivity of regulated, large-river wetlands. Bioscience 48(9): 721–733.

    Article  Google Scholar 

  • Giorgi, A., C. Feijoó & G. Tell, 2005. Primary producers in a Pampean stream: temporal variation and structuring role. Biodiversity Conservation 14: 1699–1718.

    Article  Google Scholar 

  • Gómez, N., J. C. Donato, A. Giorgi, H. Guasch, P. Mateo & S. Sabater, 2009. La biota de los ríos: los microorganismos autótrofos. In: Elosegi, A., & Sabater, S. (eds), Conceptos y técnicas en ecología fluvial. Rubes editorial: 219–242.

  • Goodman, L. A., 1960. On the exact variance of products. Journal of the American Statistical Association 55: 708–713.

    Article  Google Scholar 

  • Gordon, N. D., T. A. McMahon, B. L. Finlayson, C. J. Gippel & R. J. Nathan, 2004. Stream Hydrology. An Introduction for Ecologists, 2nd ed. John Wiley and Sons, Chichester, UK.

    Google Scholar 

  • Hough, R. A., 1974. Photorespiration and productivity in submersed aquatic vascular plants. Limnology and Oceanography 19: 912–927.

    Article  CAS  Google Scholar 

  • Jackson, T. A. & R. E. Hecky, 1980. Depression of primary productivity by humic matter in lake and reservoir waters of the boreal forest zone. Canadian Journal of Fisheries and Aquatic Sciences 37: 2300–2317.

    Article  Google Scholar 

  • Jassby, A. D. & T. Platt, 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnology and Oceanography 21: 540–547.

    Article  CAS  Google Scholar 

  • Johnson, C., B. V. Millett, T. Gilmanov, R. A. Voldseth, G. R. Guntenspergen & D. E. Naugle, 2005. Vulnerability of northern prairie wetlands to climate change. Bioscience 55(10): 863–872.

    Article  Google Scholar 

  • Mann, C. J. & R. G. Wetzel, 1999. Photosynthesis and stomatal conductance of Juncus effuses in temperate wetland ecosystem. Aquatic Botany 63: 127–144.

    Article  Google Scholar 

  • Marzolf, E. R., P. J. Mulholland & A. D. Steinman, 1994. Improvements to the diurnal upstream–downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Canadian Journal of Fisheries and Aquatic Sciences 51: 1591–1599.

    Article  Google Scholar 

  • Naegeli, M. W. & U. Uehlinger, 1997. Contribution of the hyporheic zone to ecosystem metabolism in a prealpine gravel-bed river. Journal of the North American Benthological Society 16: 794–804.

    Article  Google Scholar 

  • Odum, H. T., 1956. Primary production in flowing waters. Limnology and Oceanography 1: 102–117.

    Article  Google Scholar 

  • Parkhill, K. L. & J. S. Gulliver, 1998. Modeling the effect of light on whole-stream respiration. Ecological Modelling 117: 333–342.

    Article  Google Scholar 

  • Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks & C. Stromberg, 1997. The natural flow regime. A paradigm for river conservation and restoration. BioScience 47(11): 769–784.

    Article  Google Scholar 

  • SAGPyA & CFA, 1995. El deterioro de las tierras de la República Argentina. Secretaría de Agricultura, Ganadería, Pesca y Alimentos de la Nación y Consejo Federal Agropecuario, Buenos Aires, Argentina.

  • Scian, B., J. C. Labraga, W. Reimers & O. Frumento, 2006. Characteristics of large-scale atmospheric circulation related to extreme monthly rainfall anomalies in the Pampa Region, Argentina, under non-ENSO conditions. Theoretical and Applied Climatology 85: 89–106.

    Article  Google Scholar 

  • Shoup, T. E., 1983. Numerical Methods for the Personal Computer. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Soriano, A., R. J. C. León, O. E. Sala, R. S. Lavado, V. A. Deregibus, M. A. Cahuépé, O. A. Scaglia, C. A. Velázquez & J. H. Lemcoff, 1992. Río de la Plata grasslands. In Coupland, R. T. (ed), Ecosystems of the World. Natural Grasslands: Introduction and Western Hemisphere. Elsevier, New York: 367–407.

  • Thyssen, N., M. Erlandsen, E. Jeppesen & C. Ursin, 1987. Reaeration of oxygen in shallow, macrophyte rich streams. 1. Determination of the reaeration rate coefficient. Internationale Revue Der Gesamten Hydrobiologie 72: 405–429.

    Article  CAS  Google Scholar 

  • Uehlinger, U. & M. W. Naegeli, 1998. Ecosystem metabolism, disturbance, and stability in a prealpine gravel bed river. Journal of the North American Benthological Society 17: 165–178.

    Article  Google Scholar 

  • Uehlinger, U., C. König & P. Reichert, 2000. Variability of photosynthesis-irradiance curves and ecosystem respiration in a small river. Freshwater Biology 44: 493–507.

    Article  Google Scholar 

  • Velasco, J., A. Millan, M. R. Vidal-Abarca, M. L. Suarez, C. Guerrero & M. Ortega, 2003. Macrophytic, epipelic and epilithic primary production in a semiarid mediterranean stream. Freshwater Biology 48: 1408–1420.

    Article  Google Scholar 

  • Vilches, C. & A. Giorgi, 2010. Metabolism in a macrophyte-rich stream exposed to flooding. Hydrobiologia 654(1): 57–65.

    Article  Google Scholar 

  • Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems. Academic Press, London, UK.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 1991. Limnological Analyses, 2nd ed. Springer, New York.

    Book  Google Scholar 

  • Zhang, Y. L., B. Q. Qin, W. M. Chen & G. W. Zhu, 2005. A preliminary study of chromophoric dissolved organic matter (CDOM) in lake Taihu, a shallow subtropical lake in China. Acta Hydrochimica et Hydrobiologica 33(4): 315–323.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Amarú Olivia Leggieri. We wish to thank Julieta De Anna, Martín Da Silva, Eduardo Zunino, Carolina Rodríguez Castro, Ricardo Leggieri, and Carolina Vilches for field assistance and Dr Julie Sanford, Dr. C. Coviella, and M. V. Gonzalez Eusevi for improving the English text. The manuscript has benefited greatly from the comments of Dr L. M. Bini and the two anonymous reviewers. The study was supported by the FONCyT (Ministerio de Ciencia, Tecnología e Innovación Productiva), the National University of Luján (Buenos Aires, Argentina), and the BBVA Fundation. L. Leggieri is a PRH (ANCYPT-UNLu) doctorate fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Leggieri.

Additional information

Handling editor: Luis Mauricio Bini

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leggieri, L., Feijoó, C., Giorgi, A. et al. Seasonal weather effects on hydrology drive the metabolism of non-forest lowland streams. Hydrobiologia 716, 47–58 (2013). https://doi.org/10.1007/s10750-013-1543-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1543-4

Keywords

Navigation