Skip to main content
Log in

Evolution of development type in benthic octopuses: holobenthic or pelago-benthic ancestor?

  • CEPHALOPOD BIOLOGY AND EVOLUTION
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Octopuses of the family Octopodidae are singular among cephalopods in their reproductive behavior, showing two major reproductive strategies: the first is the production of few and large eggs resulting in well-developed benthic hatchlings (holobenthic life history); the second strategy is the production of numerous small eggs resulting in free-swimming planktonic hatchlings (pelago-benthic life history). Here, we utilize a Bayesian-based phylogenetic comparative method using a robust molecular phylogeny of 59 octopus species to reconstruct the ancestral states of development type in benthic octopuses, through the estimation of the most recent common ancestors and the rate of gain and loss in complexity (i.e., planktonic larvae) during the evolution. We found a high probability that a free-swimming hatchling was the ancestral state in benthic octopuses, and a similar rate of gain and loss of planktonic larvae through evolution. These results suggest that in benthic octopuses the holobenthic strategy has evolved from an ancestral pelago-benthic life history. During evolution, the paralarval stage was reduced to well-developed benthic hatchlings, which supports a “larva-first” hypothesis. We propose that the origin of the holobenthic life history in benthic octopuses is associated with colonization of cold and deep sea waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aljanabi, S. M. & I. Martinez, 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research 25: 4692–4693.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Allcock, A. L., J. M. Strugnell & M. P. Johnson, 2008. How useful are the recommended counts and indices in the systematics of the Octopodidae (Mollusca: Cephalopoda). Biological Journal of Linnean Society 95: 205–218.

    Article  Google Scholar 

  • Avaria-Llautureo, J., C. E. Hernández, D. Boric-Bargetto, C. B. Canales-Aguirre, B. Morales-Pallero & E. Rodríguez-Serrano, 2012. Body size evolution in extant Oryzomyini rodents: Cope’s rule or miniaturization? PLoS One 7(4): e34654.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Belcari, P., G. Tserpes, M. González, E. Lefkaditou, B. Marceta, G. Piccinetti Manfrin & A. Souplet, 2002. Distribution and abundance of Eledone cirrhosa (Lamarck, 1798) and Eledone moschata (Lamarck, 1798) (Cephalopoda: Octopoda) in the Mediterranean Sea. Scientia Marina 66: 143–155.

    Google Scholar 

  • Boletzky, S., 1992. Evolutionary aspects of development, life style, and reproductive mode in incirrate octopods (Mollusca, Cephalopoda). Revue Suisse De Zoologie 99: 755–770.

    Google Scholar 

  • Boyle, P. R. & S. V. Boletzky, 1996. Cephalopod populations: definition and dynamics. Philosophical Transactions of the Royal Society B 351: 985–1002.

    Article  Google Scholar 

  • Byrne, M., 2006. Life history diversity and evolution in the Asterinidae. Integrative and Comparative Biology 46: 243–254.

    Article  CAS  PubMed  Google Scholar 

  • Carlini, D. B., R. E. Young & M. Vecchione, 2001. A molecular phylogeny of the Octopoda (Mollusca: Cephalopoda) evaluated in light of morphological evidence. Molecular Phylogenetics and Evolution 21: 338–397.

    Article  Google Scholar 

  • Collin, R., O. R. Chaparro, F. Winkler & D. Véliz, 2007. Molecular phylogenetic and embryological evidence that feeding larvae have been reacquired in a marine gastropod. Biological Bulletin 212: 83–92.

    Article  CAS  PubMed  Google Scholar 

  • Collins, M. A., C. Yau, P. R. Boyle, D. Friese & U. Piatkowski, 2002. Distribution of cephalopods from plankton surveys around the British Isles. Bulletin of Marine Science 71: 239–254.

    Google Scholar 

  • Darriba, D., G. L. Taboada, R. Doallo & D. Posada, 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.

    Google Scholar 

  • Duda, T. F. & S. R. Palumbi, 1999. Developmental shifts and species selection in gastropods. Proceedings of National Academy of Science United States of America 96: 10272–10277.

    Article  CAS  Google Scholar 

  • Felsenstein, J., 1985. Phylogenies and the comparative method. American Naturalist 125: 1–15.

    Article  Google Scholar 

  • Gleadall, I. G., 2004. Some old and new genera of octopus. Interdisciplinary Information Science 10: 99–112.

    Article  Google Scholar 

  • Goldberg, E. E. & B. Igić, 2008. On phylogenetic tests of irreversible evolution. Evolution 62: 2727–2741.

    Article  PubMed  Google Scholar 

  • Gould, S. J., 1970. Dollo on Dollo’s Law: irreversibility and the status of evolutionary laws. Journal of the History Biology 3: 189–212.

    Article  CAS  Google Scholar 

  • Hanlon, R. T. & J. B. Messenger, 1996. Cephalopod behaviour. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hart, M. W., 2000. Phylogenetic analyses of mode of larval development. Seminars in Cells and Development Biology 11: 411–418.

    Article  CAS  Google Scholar 

  • Hart, M. W., M. Byrne & M. J. Smith, 1997. Molecular phylogenetic analysis of life-history evolution in asterinid starfish. Evolution 51: 1848–1861.

    Article  Google Scholar 

  • Harvey, P. H. & M. Pagel, 1991. The comparative method in evolutionary biology. Oxford University Press, Oxford.

    Google Scholar 

  • Hernández, C. E., E. Rodríguez-Serrano, J. Avaria-Llautureo, O. Inostroza-Michael, B. Morales-Pallero, D. Boric-Bargetto, C. B. Canales-Aguirre, P. A. Marquet, & A. Meade, 2013. Using phylogenetic information and the comparative method to evaluate hypotheses in macroecology. Methods in Ecology and Evolution. doi:10.1111/2041-210X.12033.

  • Huelsenbeck, J. P. & B. Rannala, 2004. Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Systematic Biology 53: 904–913.

    Article  PubMed  Google Scholar 

  • Jeffery, C. H., R. B. Emlet & D. T. J. Littlewood, 2003. Phylogeny and evolution of developmental mode in temnopleurid echinoids. Molecular Phylogenetics and Evolution 28: 99–118.

    Article  CAS  PubMed  Google Scholar 

  • Kaneko, N., T. Kubodera & A. Iguchis, 2011. Taxonomic study of shallow-water octopuses (Cephalopoda: Octopodidae) in Japan and adjacent waters using mitochondrial genes with perspectives on Octopus DNA barcoding. Malacologia 54: 97–108.

    Article  Google Scholar 

  • Kass, R. E. & A. E. Raftery, 1995. Bayes factors. Journal of the American Statistical Association 90: 773–795.

  • Keever, C. C. & M. W. Hart, 2008. Something for nothing? Reconstruction of ancestral character states in asterinid sea star development. Evolution and Development 10: 62–73.

    Article  PubMed  Google Scholar 

  • Kerr, A. M., A. H. Baird & T. P. Hughes, 2011. Correlated evolution of sex and reproductive mode in corals (Anthozoa: Scleractinia). Proceedings of the Royal Society of London B 278: 75–81.

    Article  Google Scholar 

  • Lindgren, A. R., M. S. Pankey, F. G. Hochberg & T. H. Oakley, 2012. A multi-gene phylogeny of Cephalopoda supports convergent morphological evolution in association with multiple habitat shifts in the marine environment. BMC Evolutionary Biology 12: 129.

    Article  PubMed Central  PubMed  Google Scholar 

  • McEdward, L. R., 1992. Morphology and development of a unique type of pelagic larva in the starfish Pteraster tesselatus (Echinodermata: Asteroidea). Biological Bulletin 182: 177–187.

    Article  Google Scholar 

  • McHugh, D. & G. W. Rouse, 1998. Life history evolution of marine invertebrates: new views from phylogenetic systematics. Trends in Ecology and Evolution 13: 182–186.

    Article  CAS  PubMed  Google Scholar 

  • Meade, A., 2011. BayesTrees v. 1.3. http://www.evolution.reading.ac.uk/BayesTrees.html. Accessed 11 June 2012.

  • Nesis, K. N., 2003. Distribution of recent Cephalopoda and implications for plio-pleistocene events. Berliner Paläobiologische Abhandlungen 3: 199–224.

    Google Scholar 

  • Nielsen, C., 2009. How did indirect development with planktotrophic larvae evolve? Biological Bulletin 216: 203–215.

    PubMed  Google Scholar 

  • Norman, M. D., 2000. Cephalopods: a world guide. Conch Books, Hackenheim.

    Google Scholar 

  • Norman, M. D. & F. G. Hochberg, 2005. The current state of octopus taxonomy. Phuket Marine Biological Research Bulletin 66: 127–154.

    Google Scholar 

  • Page, L. R., 2009. Molluscan larvae: pelagic juveniles or slowly metamorphosing larvae? Biological Bulletin 216: 216–225.

    PubMed  Google Scholar 

  • Pagel, M., A. Meade & D. Barker, 2004. Bayesian estimation of ancestral character states on phylogenies. Systematic Biology 53: 673–684.

    Article  PubMed  Google Scholar 

  • Pearse, J. S., R. Mooi, S. J. Lockhart & A. Brandt, 2007. Brooding and species diversity in the Southern Ocean: selection for brooders or speciation within brooding clades? In Krupnik, I., M. A. Lang & S. E. Miller (eds), Smithsonian at the poles contributions to international polar year science. Smithsonian Institution Scholary Press, Washington: 181–196.

    Google Scholar 

  • Poulin, E. & J. P. Féral, 1996. Why are so many species of brooding antarctic echinoids? Evolution 50: 820–830.

    Article  Google Scholar 

  • Rambaut, A., & A. J. Drummond, 2009. Tracer v1.5. http//tree.bio.ed.ac.uk/software/tracer. Accessed 11 June 2012.

  • Roff, D. A., 2002. Life history evolution. Sinauer Associates, Sunderland.

    Google Scholar 

  • Ronquist, F., M. Teslenko, P. van der Mark, D. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard & J. P. Huelsenbeck, 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 22: 539–542.

    Article  Google Scholar 

  • Roura, A., 2013. Ecology of planktonic cephalopod paralarvae in coastal upwelling systems. PhD thesis. Universidad de Vigo.

  • Sly, B. J., M. S. Snoke & R. A. Raff, 2003. Who came first—larvae or adults? Origins of bilaterian metazoan larvae. International Journal of Developmental Biology 47: 623–632.

    PubMed  Google Scholar 

  • Stearns, S. C., 1992. The evolution of life histories. Oxford University Press, Oxford.

    Google Scholar 

  • Stearns, S. C. & R. F. Hoekstra, 2005. Evolution, an introduction, 2nd ed. Oxford University Press, Oxford.

    Google Scholar 

  • Strathmann, R. R., 1993. Hypotheses on the origins of marine larvae. Annual Review of Ecology and Systematics 24: 89–117.

    Article  Google Scholar 

  • Strugnell, J. M., M. Norman, J. Jackson, A. J. Drummond & A. Cooper, 2005. Molecular phylogeny of coleoid cephalopods (Mollusca: Cephalopoda) using a multigene approach; the effect of data partitioning on resolving phylogenies in a Bayesian framework. Molecular Phylogenetics and Evolution 37: 426–441.

    Article  CAS  PubMed  Google Scholar 

  • Strugnell, J., A. D. Rogers, P. A. Prodöhl, M. A. Collins & A. L. Allcock, 2008. The thermohaline expressway: the Southern Ocean as a centre of origin for deep-sea octopuses. Cladistics 24: 853–860.

    Article  Google Scholar 

  • Strugnell, J., Y. Cherel, I. R. Cooke, I. G. Gleadall, F. G. Hochberg, C. M. Ibáñez, E. Jorgensen, V. V. Laptikhovsky, K. Linse, M. Norman, M. Vecchione, J. R. Voight & A. L. Allcock, 2011. The Southern Ocean: source and sink? Deep-Sea Research II 58: 196–204.

    Article  CAS  Google Scholar 

  • Sweeney, M. J., C. F. E. Roper, K. M. Mangold, M. R. Clarke & S. V. Boletzky, 1992. “Larval” and juvenile cephalopods: a manual for their identification. Smithsonian Contributions to Zoology 513: 1–282.

    Article  Google Scholar 

  • Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei & S. Kumar, 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739.

    Article  CAS  PubMed  Google Scholar 

  • Villanueva, R. & M. D. Norman, 2008. Biology of the planktonic stages of benthic octopuses. Oceanography and Marine Biology Annual Review 46: 105–202.

    Article  Google Scholar 

  • Voight, J. R., 2009. Differences in spermatophore availability among Octopodid species (Cephalopoda: Octopoda). Malacologia 51: 143–153.

    Article  Google Scholar 

  • Wodinsky, J., 2008. Reversal and transfer of spermatophores by Octopus vulgaris and O. hummelincki. Marine Biology 155: 91–103.

    Article  Google Scholar 

  • Yang, Z. & B. Rannala, 2005. Branch-length prior influences Bayesian posterior probability of phylogeny. Systematic Biology 54: 455–470.

    Article  PubMed  Google Scholar 

  • Young, R. E. & R. F. Harman, 1988. “Larva”, “paralarva” and “subadult” in cephalopod terminology. Malacología 29: 201–208.

    Google Scholar 

  • Young, R. E. & M. Vecchione, 1996. Analysis of morphology to determine primary sister-taxon relationships within coleoid cephalopods. American Malacological Bulletin 12: 91–112.

    Google Scholar 

  • Young, R. E., M. Vecchione & D. T. Donovan, 1998. The evolution of coleoid cephalopods and their present biodiversity and ecology. South African Journal of Marine Science 20: 393–420.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Claudio González, Unai Markaida, Cesar Salinas, and Arminda Rebollo for their help with octopus tissue samples and Ian Gleadall for comments about octopus phylogenetic relationships.

Conflict of interest

This work was partially funded by grants to C.I. FONDECYT 3110152 and to E.P. ICM P05-002 and PFB-23. Support to M.C. Pardo-Gandarillas by a MECESUP-Chile Doctoral Fellowship is also acknowledged. Finally, F. Peña acknowledges a CONICYT Master’s Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Ibáñez.

Additional information

Guest editors: Erica A. G. Vidal, Mike Vecchione & Sigurd von Boletzky / Cephalopod Life History, Ecology and Evolution

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibáñez, C.M., Peña, F., Pardo-Gandarillas, M.C. et al. Evolution of development type in benthic octopuses: holobenthic or pelago-benthic ancestor?. Hydrobiologia 725, 205–214 (2014). https://doi.org/10.1007/s10750-013-1518-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1518-5

Keywords

Navigation