Skip to main content
Log in

Is Gammarus tigrinus (Crustacea, Amphipoda) becoming cosmopolitan through shipping? Predicting its potential invasive range using ecological niche modeling

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

While the intensity of global shipping has increased dramatically over the last decades, species exchange between continents has likewise intensified. Ballast water of ships is recognized playing a major role in this process. Many of the larger sea ports have become bridgeheads for invasions. Ecological niche modeling is used to investigate the potential invasive range and high invasive risk ports of the North American amphipod Gammarus tigrinus. Sixty-two occurrences of G. tigrinus in its native range (North America) and 34 environmental data sets were compiled. Data on dispersal distances were used via ecological niche modeling to analyze the invasive potential of G. tigrinus. The invasive risk of large ports was analyzed according to modeling result, as well as their salinity in the main oceanic routes of the world. G. tigrinus had a rapid range extension on the British Isles and in the rest of Western Europe. Now it is invading the countries surrounding the Baltic Sea. Worldwide it has a vast potential invasive range. It has a high invasive risk for many large ports along the main oceanic routes, among which the ports of Shanghai, Buenos Aires and Montevideo have the highest invasive risk. G. tigrinus may become cosmopolitan through shipping, and this possibility is increasing. Particular emphasis should be placed on preventing human-mediated dispersal. Ports may be the first places G. tigrinus invades. This study can identify high invasive risk ports, especially those at risk of introduced North America species. More importantly, the water of large ports should be monitored regularly for exotic aquatic organisms that may survive temporarily or permanently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson, R. P., D. Lew & A. T. Peterson, 2003. Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecological Modelling 162: 211–232.

    Article  Google Scholar 

  • Anonymity, 2009. GBIF – global biodiversity information facility. Free and open access to biodiversity data. Online at http://www.gbif.org/. Accessed 16 March 2009.

  • Arbačiauskas, K., 2008. Amphipods of the Nemunas River and the Curonian Lagoon, the Baltic Sea Basin: where and which native freshwater Amphipods persist? Acta Zoologica Lituanica 18: 10–16.

    Article  Google Scholar 

  • Battle, J., 2009. Silent Invasion – The Spread of Marine Invasive Species Via Ships’ Ballast Water. World Wildlife Fund International, Gland, Switzerland.

    Google Scholar 

  • Berezina, N. A., 2007. Expansion of the North American amphipod Gammarus tigrinus Sexton, 1939 to the Neva Estuary (easternmost Baltic Sea). Oceanologia 49: 129–135.

    Google Scholar 

  • Bij de Vaate, A., K. Jazdzewski, H. A. M. Ketelaars, S. Gollasch & G. van der Velde, 2002. Geographical patterns in the range extension of Ponto-Caspian macroinvertebrate species in Europe. Canadian Journal of Fisheries and Aquatic Sciences 59: 1159–1174.

    Article  Google Scholar 

  • Bousfield, E. L., 1958. Fresh-water amphipod crustaceans of glaciated North America. Canadian Field Naturalist 72: 55–113.

    Google Scholar 

  • Bousfield, E. L., 1973. Shallow-Water Gammaridean Amphipoda of New England. Cornell University Press, London.

    Google Scholar 

  • Bulnheim, H. P., 1976. Gammarus tigrinus, ein neues Faunenelement der Ostseeförde Schlei. Schriften des Naturwissenschaftlichen Vereins für Schleswig-Holstein 46: 79–84.

    Google Scholar 

  • Capelo, J. C., J. V. Garcia & G. Pereira, 2004. Benthic macroinvertebrate diversity of the Gulf of Paria and Orinoco Delta. RAP Bulletin of Biological Assessment 37: 198–203.

    Google Scholar 

  • Cohen, A. N., 1998. Ships’ Ballast Water and the Introduction of Exotic Organisms into the San Francisco Estuary: Current Status of the Problem and Options for Management. San Francisco Estuary Institute, Richmond, CA.

    Google Scholar 

  • Corbett, J. J., P. S. Fischbeck & S. N. Pandis, 1999. Global nitrogen and sulfur emissions inventories for oceangoing ships. Journal of Geophysical Research 104: 3457–3470.

    Article  CAS  Google Scholar 

  • Costello, C., J. M. Drake & D. M. Lodge, 2007. Evaluating an invasive species policy: ballast water exchange in the great lakes. Ecological Applications 17: 655–662.

    Article  PubMed  Google Scholar 

  • Daunys, D. & M. L. Zettler, 2006. Invasion of the North American Amphipod (Gammarus tigrinus Sexton, 1939) into the Curonian Lagoon, South-Eastern Baltic Sea. Acta Zoologica Lituanica 16: 20–26.

    Google Scholar 

  • Devin, S., J. N. Beisel, V. Bachmann & J. C. Moreteau, 2001. Dikerogammarus villosus (Amphipoda: Gammaridae): another invasive species newly established in the Moselle river and French hydrosystems. Annales de Limnologie 37: 21–27.

    Article  Google Scholar 

  • Drake, J. M. & J. M. Bossenbroek, 2004. The potential distribution of zebra mussels in the United States. BioScience 54: 931–941.

    Article  Google Scholar 

  • Dunstan, P. K. & N. J. Bax, 2008. Management of an invasive species: defining and testing the effectiveness of ballast-water management options using management strategy evaluation. ICES Journal of Marine Science 65: 841–850.

    Article  Google Scholar 

  • Endresen, Ø., E. Sørgård, J. K. Sundet, S. B. Dalsøren, I. S. A. Isaksen, T. F. Berglen & G. Gravir, 2003. Emission from international sea transportation and environmental impact. Journal of Geophysical Research 108: 4560.

    Article  Google Scholar 

  • Ezhova, E., L. Żmudzinski & K. Maciejewska, 2005. Longterm trends in the macrozoobentos of the Vistula Lagoon, southeastern Baltic Sea: species composition and biomass distribution. The Bulletin of the Sea Fisheries Institute 164: 55–73.

    Google Scholar 

  • Forsyth, D. M., R. P. Duncan, M. Bomford & G. Moore, 2004. Climate suitability, life-history traits, introduction effort, and establishment and spread of introduced mammals in Australia. Conservation Biology 18: 557–569.

    Article  Google Scholar 

  • Gaubert, P., M. Papeş & A. T. Peterson, 2006. Natural history collections and the conservation of poorly known taxa: Ecological niche modeling in central African rainforest genets (Genetta spp.). Biological Conservation 130: 106–117.

    Article  Google Scholar 

  • Grabowski, M., K. Bacela & A. Konopacka, 2007a. How to be an invasive gammarid (Amphipoda: Gammaroidea) – comparison of life history traits. Hydrobiologia 590: 75–84.

    Article  Google Scholar 

  • Grabowski, M., K. Jażdżewski & A. Konopacka, 2007b. Alien Crustacea in polish waters – Amphipoda. Aquatic Invasions 2: 25–38.

    Article  Google Scholar 

  • Gruszka, P., 1995. Gammarus tigrinus Sexton, 1939 (Crustacea: Amphipoda) – nowy dla fauny Polski gatunek w estuarium Odry. I Konferencja ‘Przyrodnicze aspekty badania wod estuarium Odry i wod jeziornych wojewodztwa szczecinskiego’. Materialy Konferencyjne, 7, 44. Uniwersytet Szczecinski.

    Google Scholar 

  • Gruszka, P., 2002. Gammarus tigrinus (Sexton, 1939) (Crustacea, Amphipoda) – a new species in the Puck Bay (southern Baltic). Abstracts of 4th European Crustacean Conference, 22–26 July 2002, University of Lodz: 40–41.

  • Herborg, L. M., C. L. Jerde, D. M. Lodge, G. M. Ruiz & H. J. Macisaac, 2007a. Predicting invasion risk using measures of introduction effort and environmental niche models. Ecological Applications 17: 663–674.

    Article  PubMed  Google Scholar 

  • Herborg, L. M., D. Rudnick, S. L. Yang, D. M. Lodge & H. J. Macisaac, 2007b. Predicting the range of Chinese mitten crabs in Europe. Conservation Biology 21: 1316–1323.

    Article  PubMed  Google Scholar 

  • Herkül, K. & J. Kotta, 2007. New records of the amphipods Chelicorophium curvispinum, Gammarus tigrinus, G. duebeni, and G. lacustris in the Estonian coastal sea. Proceedings of the Estonian Academy of Sciences: Biology, Ecology 56: 290–296.

  • Higgins, S. I., D. M. Richardson, R. M. Cowling & T. H. Trinder-Smith, 1999. Predicting the landscape-scale distribution of alien plants and their threat to plant diversity. Conservation Biology 13: 303–313.

    Article  Google Scholar 

  • Iguchi, K., K. Matsuura, K. McNyset, A. T. Peterson, R. Scachetti-Pereira, K. A. Powers, D. A. Vieglais, E. O. Wiley & T. Yodo, 2004. Predicting invasions of North American basses in Japan using native range data and a genetic algorithm. Transactions of the American Fisheries Society 133: 845–854.

    Article  Google Scholar 

  • International Maritime Organisation (IMO), 2003. Marine Environmental Protection Committee (MEPC), Draft International Convention for the Control of Management of Ships’ Ballast Water and Sediments. MEPC 49/2/3, 24 March.

  • Jażdżewski, K. & A. Konopacka, 2000. Immigration history and present distribution of alien crustaceans in Polish waters. In J. C. von Vaupel Klein & F. R. Schram (eds), The Biodiversity Crisis and Crustacea. Proceedings of the 4th International Crustacean Congress Vol. 2, Crustacean Issues, 12. Brill, Leiden: 55–64.

  • Kelly, D. W., H. J. Macisaac & D. D. Heath, 2006a. Vicariance and dispersal effects on phylogeographic structure and speciation in a widespread estuarine invertebrate. Evolution 60: 257–267.

    PubMed  Google Scholar 

  • Kelly, D. W., J. R. Muirhead, D. D. Heath & H. J. Macisaac, 2006b. Contrasting patterns in genetic diversity following multiple invasions of fresh and brackish waters. Molecular Ecology 15: 3641–3653.

    Article  CAS  PubMed  Google Scholar 

  • Kolar, C. S. & D. M. Lodge, 2002. Ecological predictions and risk assessment for alien fishes in North America. Science 298: 1233–1236.

    Article  CAS  PubMed  Google Scholar 

  • Kotta, J., 2005. Gammarus tigrinus arrived in the Gulf of Riga in July 2003. ICES Report of Benthos Ecology Working Group, 19–22 April 2005. Copenhagen, Denmark: 14 pp.

  • Levine, J. M. & C. M. D’ Antonio, 2003. Forecasting biological invasions with increasing international trade. Conservation Biology 17: 322–326.

    Article  Google Scholar 

  • Li, H. M., H. Xiao, H. Peng, H. X. Han & D. Y. Xue, 2006. Potential global range expansion of a new invasive species, the Erythrina gall wasp, Quadrastichus erythrinae Kim (Insecta: Hymenoptera: Eulophidae). The Raffles Bulletin of Zoology 54: 229–234.

    Google Scholar 

  • Martín, A. & Y. J. Díaz, 2007. Biodiversity of peracarid crustaceans in the Orinoco River Delta, Venezuela. Revista de Biología Tropical 55: 87–102.

    Google Scholar 

  • Massard, J. A. & G. Gaby, 1992. A new record of Gammarus tigrinus Sexton, 1939 in a former arm of the Moselle between Luxemborg and Germany (Crustacea: Amphipoda). Bulletin de la Societe des Naturalistes Luxembourgeois 93: 195–198.

    Google Scholar 

  • Myers, A. A., 1993. Dispersal and endemicity in gammaridean Amphipoda. Journal of Natural History 27: 901–908.

    Article  Google Scholar 

  • Nijssen, H. & J. H. Stock, 1966. The amphipod, Gammarus tigrinus Sexton, 1939, introduced in the Netherlands (Crustacea). Beaufortia 13: 197–206.

    Google Scholar 

  • Perrings, C., K. Dehnen-Schmutz, J. Touzal & M. Williamson, 2005. How to manage biological invasions under globalization. Trends in Ecology and Evolution 20: 212–215.

    Article  PubMed  Google Scholar 

  • Peterson, A. T., 2003. Predicting the geography of species’ invasions via ecological niche modeling. Quarterly Review of Biology 78: 419–433.

    Article  PubMed  Google Scholar 

  • Peterson, A. T. & K. P. Cohoon, 1999. Sensitivity of distributional prediction algorithms to geographic data completeness. Ecological Modelling 117: 159–164.

    Article  Google Scholar 

  • Peterson, A. T. & R. S. Pereira, 2004. Potential geographic distribution of Anoplophora glabripennis (Coleoptera: Cerambycidae) in North America. The American Midland Naturalist 151: 170–178.

    Article  Google Scholar 

  • Peterson, A. T. & C. R. Robins, 2003. Using ecological-niche modeling to predict Barred Owl invasions with implications for Spotted Owl conservation. Conservation Biology 17: 1161–1165.

    Article  Google Scholar 

  • Peterson, A. T., R. Williams & G. Chen, 2007. Modeled global invasive potential of Asian gypsy moths, Lymantria dispar. Entomologia Experimentalis et Applicata 125: 39–44.

    Article  Google Scholar 

  • Pienimäki, M., M. Helavuori & E. Leppakoski, 2004. First findings of the North American amphipod Gammarus tigrinus Sexton, 1939 along the Finnish coast. Memoranda Societatis pro Fauna et Flora Fennica 80: 17–19.

    Google Scholar 

  • Pinkster, S., 1975. The introduction of the alien amphipod Gammarus tigrinus Sexton 1939 (Crustacea, Amphipoda) in the Netherlands and its competition with indigenous species. Hydrobiological Bulletin 9: 131–138.

    Article  Google Scholar 

  • Pinkster, S., H. Smit & J. N. Brandse-de, 1977. The introduction of the alien amphipod Gammarus tigrinus Sexton, 1939, in the Netherlands and its competition with indigenous species. Crustaceana Supplement 4: 91–105.

    Google Scholar 

  • Piscart, C., J. C. Moreteau & J. N. Beisel, 2005. Biodiversity and structure of macroinvertebrate communities along a small permanent salinity gradient (Meurthe River, France). Hydrobiologia 551: 227–236.

    Article  Google Scholar 

  • Piscart, C., A. Manach, G. H. Copp & P. Marmonier, 2007. Distribution and microhabitats of native and non-native gammarids (Amphipoda, Crustacea) in Brittany, with particular reference to the endangered endemic sub-species Gammarus duebeni celticus. Journal of Biogeography 34: 524–533.

    Article  Google Scholar 

  • Richardson, D. M. & J. P. McMahon, 1992. A bioclimatic analysis of Eucalyptus nintens to identify potential planting regions in Southern Africa. South African Journal of Science 88: 380–387.

    Google Scholar 

  • Robertson, M. P., M. H. Villet & A. R. Palmer, 2004. A fuzzy classification technique for predicting species’ distributions: applications using invasive alien plants and indigenous insects. Diversity and Distributions 10: 461–474.

    Article  Google Scholar 

  • Rouget, M. & D. M. Richardson, 2003. Inferring process from pattern in plant invasions: a semimechanistic model incorporating propagule pressure and environmental factors. American Naturalist 162: 713–724.

    Article  PubMed  Google Scholar 

  • Rudolph, K., 1994. Funde des Amphipoden Gammarus tigrinus Sexton, 1939 in zwei Havelseen der Region Berlin/Brandenburg (Crustacea: Amphipoda: Gammaridae). Faunistische Abhandlungen, Staatlisches Museum für Tierkunde, Dresden 19: 129–133.

    Google Scholar 

  • Santagata, S., K. Bacela, D. F. Reid, K. A. Mclean, J. S. Cohen, J. R. Cordell, C. W. Bron, T. H. Johengen & G. M. Ruiz, 2008. Concentrated sodium chloride brine solutions as an additional treatment for preventing the introduction of non-indigenous species in the ballast tanks of ships declaring no ballast on board. Environmental Toxicology and Chemistry 28: 346–353.

    Article  Google Scholar 

  • Schmitz, W., 1960. Die Einburgerung von Gammurus tigrinus Sexton auf dem europaischen Kontinent. Archive für Hydrobiologie 57: 223–225.

    Google Scholar 

  • Sexton, E. W. & L. H. N. Cooper, 1939. On a new species of Gammarus (G. tigrinus) from the Droitwich District. Journal of the Marine Biological Association of the UK 23: 543–551.

    Article  Google Scholar 

  • Stockwell, D. R. B. & I. R. Noble, 1992. Induction of sets of rules from animal distribution data: a robust and informative method of analysis. Mathematics and Computers in Simulation 33: 385–390.

    Article  Google Scholar 

  • Stockwell, D. R. B. & D. P. Peters, 1999. The GARP modeling system: problems and solutions to automated spatial prediction. International Journal of Geographical Information Systems 13: 143–158.

    Article  Google Scholar 

  • Stohlgren, T. J., D. Barnett, C. Flather, P. Fuller, B. Peterjohn, J. Kartesz & L. L. Master, 2006. Species richness and patterns of invasion in plants, birds, and fishes in the United States. Biological Invasions 8: 427–447.

    Article  Google Scholar 

  • Szaniawska, A., T. Lapucki & M. Normant, 2003. The invasive amphipod Gammarus tigrinus Sexton, 1939, in Puck Bay. Oceanologia 45: 507–510.

    Google Scholar 

  • van Maren, M. J., 1978. Distribution and ecology of Gammarus tigrinus Sexton, 1939 and some other amphipod crustacean near Beaufort (North Carolina. U.S.A.). Bijdragen tot de dierkunde 48: 45–56.

    Google Scholar 

  • Wijnhoven, S., M. C. van Riel & G. van der Velde, 2003. Exotic and indigenous freshwater gammarid species: physiological tolerance to water temperature in relation to ionic content of the water. Aquatic Ecology 37: 151–158.

    Article  Google Scholar 

  • Wonham, M. J., J. T. Carlton, G. M. Ruiz & L. D. Smith, 2000. Fish and ships: relating dispersal frequency to success in biological invasions. Marine Biology 136: 1111–1121.

    Article  Google Scholar 

  • Zettler, M. L., 1995. Erstnachweis von Gammarus tigrinus Sexton, 1939 (Crustacea: Amphipoda) in der Darβ-Zingster Boddenkette und seine derzeitige Verbreitung an der deutschen Ostseeküste. Archiv der Freunde der Naturgeschichte Mecklenburg 34: 123–140.

    Google Scholar 

  • Zhu, L., O. J. Sun, W. Sang, Z. Li & K. Ma, 2007. Predicting the spatial distribution of an invasive plant species (Eupatorium adenophorum) in China. Landscape Ecology 22: 1143–1154.

    Article  Google Scholar 

Download references

Acknowledgments

The article benefited greatly from comments by two anonymous referees. We thank Chengmin Shi, Qingwen Qi, An Zhang and Xi Cheng for their generous helps with GARP and ArcGIS software, and Xinhai Li, Guo Zheng and Yuchi Zheng for critically reading on an earlier version of the manuscript. We thank David M. Lodge (University of Notre Dame, USA) and Leif-Matthias Herborg (BC Ministry of Environment, Canada) for providing useful data. This study was supported by the National Natural Sciences Foundation of China (NSFC-30670239/30870271/30770268/30870473) and National Science Fund for Fostering Talents in Basic Research (Special Subjects in Animal Taxonomy, NSFC-J0630964/J0109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqiang Li.

Additional information

Handling editor: T. P. Crowe

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ba, J., Hou, Z., Platvoet, D. et al. Is Gammarus tigrinus (Crustacea, Amphipoda) becoming cosmopolitan through shipping? Predicting its potential invasive range using ecological niche modeling. Hydrobiologia 649, 183–194 (2010). https://doi.org/10.1007/s10750-010-0244-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0244-5

Keywords

Navigation