Skip to main content
Log in

Effect of chlorophyll sampling design on water quality assessment in thermally stratified lakes

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In order to adequately assess the ecological status of thermally stratified lakes based on chlorophyll, the sampling must cover all productive layers of the water column. Missing the deep chlorophyll maxima (DCM) that often occur in the meta- or hypolimnion of transparent lakes supported by sufficient illumination and good nutrient availability may cause serious underestimation of the productivity and lead to misclassification of the lake ecological status. There is no commonly accepted sampling design for stratified lakes, and various monitoring guides suggest controversial designs. Our aim was to find some robust criteria to assess the probability of occurrence of a DCM and estimate the differences in measured mean chlorophyll concentrations caused by various sampling designs. Our theoretical model showed that the probability of occurrence of a DCM increases with increasing water transparency and decreasing lake size. Empirical data from Italian and Estonian stratified lakes confirmed the results. Testing of different sampling designs on lakes with full measured chlorophyll profiles available showed that taking only surface layer samples will lead with a high probability to an underestimation of the chlorophyll concentration in the trophogenic layer. In order not to miss the Chl peak in stratified lakes, in most cases it would be more precautious not to limit the sampling to the well-mixed epilimnion but to extend it to the whole euphotic layer. Sampling the epilimnion instead of the euphotic zone could cause up to a 70% underestimation of the chlorophyll concentration, an error that would cause a misclassification of the lake by one or even two status classes in a 5-class assessment system. In most cases, the 2.5 * Secchi depths proved a suitable criterion of the sampling depth and only in the case of surface scums, would sampling of a 3 * Secchi depth layer be recommended in order not to miss the deep chlorophyll maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bartram, J. & R. Ballance, 1996. Water Quality Monitoring: A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes. Published on behalf of UNEP and WHO, London: 400 pp.

  • Bass, R. E., A. I. Herson & K. M. Bogdan, 2001. The NEPA Book: A Step-by-Step Guide on How to Comply with the National Environmental Policy Act. Solano Press Books, Point Arena, Canada.

  • Birge, E. A., 1897. Plankton studies on Lake Mendota, 2. The crustacea from the plankton from July, 1894, to December, 1896. Transactions of the Wisconsin Academy of Science, Arts and Letters 11: 274–448.

    Google Scholar 

  • Blomquist, M., 2001. A proposed standard method for composite sampling of water chemistry and plankton in small lakes. Environmental and Ecological Statistics 8: 121–134.

    Article  Google Scholar 

  • Camacho, A., 2006. On the occurrence and ecological features of deep chlorophyll maxima (DCM) in Spanish stratified lakes. Limnetica 25: 453–478.

    Google Scholar 

  • Camacho, A., J. Erez, A. Chicote, M. Florin, M. M. Squires, C. Lehmann & R. Bachofen, 2001. Microbial microstratification, inorganic carbon photoassimilation and dark carbon fixation at the chemocline of the meromictic lake Cadagno (Switzerland) and its relevance to the food web. Aquatic Sciences 63: 91–106.

    Article  CAS  Google Scholar 

  • Carlson, R. E. & J. Simpson, 1996. A Coordinator’s Guide to Volunteer Lake Monitoring Methods. North American Lake Management Society, Madison: 96 pp.

  • Chapin, B. R. K., F. Denoyelles Jr., D. W. Graham & V. H. Smith, 2004. A deep maximum of green sulphur bacteria (‘Chlorochromatium aggregatum’) in a strongly stratified reservoir. Freshwater Biology 49: 1337–1354.

    Article  CAS  Google Scholar 

  • Chapman, D., 1996. Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring, 2nd edn. Published on behalf of UNESCO, WHO and UNEP, London: 626 pp.

  • Chorus, I. & J. Bartram, 2003. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management. Spon Press, London: 416 pp.

  • Davies-Colley, R. J. & W. N. Vant, 1988. Estimation of optical properties of water from Secchi disk depths. Water Resources Bulletin 24: 1329–1335.

    Google Scholar 

  • Directive, 2000. Directive 2000/60/EC of the European parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities L 327: 1–72.

  • Dokulil, M. T. & K. Teubner, 2000. Cyanobacterial dominance in lakes. Hydrobiologia 438: 1–12.

    Article  CAS  Google Scholar 

  • EC, 2003. Common implementation strategy for the Water Framework Directive (2000/60/EC). Guidance Document No. 7. Monitoring under the Water Framework Directive. Office for Official Publications of the European Communities, Luxembourg. http://circa.europa.eu/Public/irc/env/wfd/library?l=/framework_directive/guidance_documents/.

  • EC, 2005. Common implementation strategy for the Water Framework Directive (2000/60/EC).Guidance Document No. 14. Guidance on the intercalibration process 2004–2006. Office for Official Publications of the European Communities, Luxembourg. http://circa.europa.eu/Public/irc/env/wfd/library?l=/framework_directive/guidance_documents/.

  • EC, 2008. Commission decision 2008/915/EC of 30 October 2008 establishing, pursuant to Directive 2000/60/EC of the European parliament and of the council, the values of the member state monitoring system classifications as a result of the intercalibration exercise. Official Journal of the European Union L 332: 20–44.

    Google Scholar 

  • EC, 2009. Common implementation strategy for the water framework directive (2000/60/EC). Guidance Document No. 23. Guidance Document on Eutrophication Assessment in the context of European water policies. Office for Official Publications of the European Communities, Luxembourg. http://circa.europa.eu/Public/irc/env/wfd/library?l=/framework_directive/guidance_documents/.

  • Eccles, D. H., 1974. An outline of the physical limnology of Lake Malawi (Lake Nyasa). Limnology & Oceanography 19: 730–742.

    Article  Google Scholar 

  • EEA, 2009. Guidance on “Reporting required for assessing the state of, and trends in, the water environment at the European level”. European Environment Agency, Copenhagen. http://eea.eionet.europa.eu/Public/irc/eionetcircle/water/library?l=/wise_reporting_2009/reporting_feb2009pdf/_EN_1.0_&a=i.

  • Elias, J. E., R. Axler & E. Ruzycki, 2008. Water Quality Monitoring Protocol for Inland Lakes. Great Lakes Inventory and Monitoring Network. Natural Resources Technical Report NPS/MWR/GLKN/NRTR-2008/109. National Park Service, Fort Collins, CO.

  • Ernst, B., S. J. Hoeger, E. O’Brien & D. R. Dietrich, 2009. Abundance and toxicity of Planktothrix rubescens in the pre-alpine Lake Ammersee, Germany. Harmful Algae 8: 329–342.

    Article  CAS  Google Scholar 

  • Fahnenstiel, G. L. & J. M. Glime, 1983. Subsurface chlorophyll maximum and associated Cyclotella pulse in Lake Superior. Internationale Revue der gesamten Hydrobiologie 68: 605–616.

    Article  CAS  Google Scholar 

  • Gasol, J. M., R. Guerrero & C. Pedrós-Alió, 1992. Spatial and temporal dynamics of a metalimnetic Cryptomonas peak. Journal of Plankton Research 14: 1565–1579.

    Article  Google Scholar 

  • Gervais, F., 1998. Ecology of cryptophytes coexisting near a freshwater chemocline. Freshwater Biology 39: 61–78.

    Article  Google Scholar 

  • Gervais, F., U. Siedel, B. Heilmann, G. Weithoff, G. Heisig-Gunkel & A. Nicklisch, 2003. Small-scale vertical distribution of phytoplankton, nutrients and sulphide below the oxycline of a mesotrophic lake. Journal of Plankton Research 25: 273–278.

    Article  CAS  Google Scholar 

  • Grigorszky, I., J. Padisák, G. Borics, C. Schitchen & G. Borbély, 2003. Deep chlorophyll maximum by Ceratium hirundinella (O. F. Müller) Bergh in a shallow oxbow in Hungary. Hydrobiologia 506–509: 209–212.

    Article  Google Scholar 

  • Grobbelaar, J. U. & P. Stegmann, 1976. Biological assessment of the euphotic zone in a turbid man-made lake. Hydrobiologia 48: 263–266.

    Article  CAS  Google Scholar 

  • Haberyan, K. A. & G. K. Porter, 2003. A thermocline barrier to sedimentation in a small lake in the southeastern US. Transactions of the Missouri Academy of Science, (January 1), http://www.thefreelibrary.com. Accessed December 10 2009.

  • Hanna, M., 1990. Evaluation of models predicting mixing depth. Canadian Journal of Fisheries and Aquatic Sciences 47: 940–947.

    Article  Google Scholar 

  • Hanna, M. & R. H. Peters, 1991. Effect of sampling protocol on estimates of phosphorus and chlorophyll concentrations in lakes of low to moderate trophic status. Canadian Journal of Fisheries and Aquatic Sciences 48: 1979–1986.

    Article  CAS  Google Scholar 

  • Hutchinson, G. E. 1957. A Treatise on Limnology, Vol. 1. Geography, Physics and Chemistry. Wiley, New York: 1015 pp.

  • ISO, 1987. Water quality – sampling – part 4: guidance on sampling from lakes, natural and man-made, Standard 5667-4. International Organisation for Standardisation, Geneva.

  • ISO, 1992. Water quality – Measurement of biochemical parameters – Spectrometric determination of the chlorophyll a concentration, Standard 10260. International Organisation for Standardisation, Geneva.

  • Jackson, L. J., J. G. Stockner & P. J. Harrison, 1990. Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat Lake, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 47: 128–135.

    Article  CAS  Google Scholar 

  • Jeffrey, S. W. & G. F. Humphrey, 1975. New Spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae, and natural phytoplankton. Biochemie und Physiologie der Pflanzen 167: 191–194.

    CAS  Google Scholar 

  • Kasprzak, P., F. Gervais, R. Adrian, W. Weiler, R. Radke, I. Jäger, S. Riest, U. Siedel, B. Schneider, M. Böhme, R. Eckmann & N. Walz, 2000. Trophic characterization, pelagic food web structure and comparison of two mesotrophic lakes in Brandenburg (Germany). Internationale Revue der gesamten Hydrobiologie 85: 167–189.

    CAS  Google Scholar 

  • Klausmeier, C. A. & E. Litchman, 2001. Algal games: the vertical distribution of phytoplankton in poorly mixed water columns. Limnology & Oceanography 46: 1998–2007.

    Google Scholar 

  • Knapp, C. W., F. Noyelles, D. W. Graham & S. Bergin, 2003. Physical and chemical conditions surrounding the diurnal vertical migration of Cryptomonas spp. (Cryptophyceae) in a seasonally stratified midwestern reservoir (USA). Journal of Phycology 39: 855–861.

    CAS  Google Scholar 

  • Lepistö, L., A. L. Holopainen & H. Vuoristo, 2004. Type-specific and indicator taxa of phytoplankton as a quality criterion for assessing the ecological status of Finnish boreal lakes. Limnologica 34: 236–248.

    Google Scholar 

  • Lepistö, L., A. L. Holopainen, H. Vuoristo & S. Rekolainen, 2006. Phytoplankton assemblages as a criterion in the ecological classification of lakes in Finland. Boreal Environment Research 11: 35–44.

    Google Scholar 

  • Likens, G. E., 1975. Primary production of inland aquatic ecosystems. In Lieth, H. & R. H. Whittaker (eds), Primary Productivity of the Biosphere. Ecological Studies, Vol. 14. Springer, New York.

  • Lind, O. T., 1979. Handbook of Common Methods in Limnology. C.V. Mosby Company, St. Louis, Toronto, London: 199 pp.

  • MacIntyre, S., A. L. Alldredge & C. C. Gotschalk, 1995. Accumulation of marine snow at density discontinuities in the water column. Limnology and Oceanography 40: 449–468.

    Article  Google Scholar 

  • Marchetto, A., B. M. Padedda, M. A. Mariani, A. Lugliè & N. Sechi, 2009. A numerical index for evaluating phytoplankton response to changes in nutrient levels in deep mediterranean reservoirs. Journal of Limnology 68: 106–121.

    Google Scholar 

  • MDEQ (Michigan Department of Environmental Quality), 2001. The Michigan Department of Environmental Quality’s Lake Water Quality Assessment Monitoring Program for Michigan’s Inland Lakes. Michigan Department of Environmental Quality, Lake and Water Management Division and U.S. Geological Survey, WRD, Michigan District.

  • Mischke, U. & B. Nixdorf, 2008. Bewertung von Seen mittels Phytoplankton zur Umsetzung der EU-Wasserrahmenrichtlinie. Gewässerrport (Nr. 10), BTUC-AR 2/2008, http://opus.kobv.de/btu/volltexte/2009/953/.

  • Moll, R. A. & E. F. Stoermer, 1982. A hypothesis relating trophic status and subsurface chlorophyll maxima of lakes. Archiv für Hydrobiologie 94: 425–440.

    Google Scholar 

  • MPCA (Minnesota Pollution Control Agency), 2004. Guidance Manual For Assessing the Quality of Minnesota Surface Waters for the Determination of Impairment. Minnesota Pollution Control Agency, St. Paul Minnesota, http://www.pca.state.mn.us/publications/manuals/tmdl-guidancemanual04.pdf.

  • Nõges, T. & I. Solovjova, 2005. The formation and dynamics of deep bacteriochlorophyll maximum in the temperate and partly meromictic Lake Verevi. Hydrobiologia 547: 73–81.

    Article  CAS  Google Scholar 

  • OECD (Organization of Economic Cooperation and Development), 1982. Eutrophication of waters. Monitoring, Assessment and Control. OECD, Paris: 150 pp.

  • Padisák, J., F. Barbosa, R. Koschel & L. Krienitz, 2003. Deep layer cyanoprokaryota maxima in temperate and tropical lakes. Ergebnisse der Limnologie 58: 175–199.

    Google Scholar 

  • Padisák, J., G. Borics, I. Grigorszky & É. Soróczki-Pintér, 2006. Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: the assemblage index. Hydrobiologia 553: 1–14.

    Article  Google Scholar 

  • Pasztaleniec, A. & M. Poniewozik, 2009. Phytoplankton based assessment of the ecological status of four shallow lakes (Eastern Poland) according to Water Framework Directive – a comparison of approaches. Limnologica. doi: 10.1016/j.limno.2009.07.001.

  • Paulino, S., E. Valério, N. Faria, J. Fastner, M. Welker, R. Tenreiro & P. Pereira, 2009. Detection of Planktothrix rubescens (Cyanobacteria) associated with microcystin production in a freshwater reservoir. Hydrobiologia 621: 207–211.

    Article  CAS  Google Scholar 

  • Pérez, G., C. Queimaliños & B. Modenutti, 2002. Light climate and plankton in the deep chlorophyll maxima in North Patagonian Andean lakes. Journal of Plankton Research 24: 591–599.

    Article  Google Scholar 

  • Perez-Fuentetaja, A., P. J. Dillon, N. D. Yan & D. J. McQueen, 1999. Significance of dissolved organic carbon in the prediction of thermocline depth in small Canadian Shield lakes. Aquatic Ecology 33: 127–133.

    Article  CAS  Google Scholar 

  • Pick, F. R., C. Nalewajko & D. R. S. Lean, 1984. The origin of a metalimnetic chrysophyte peak. Limnology and Oceanography 29: 125–134.

    Article  CAS  Google Scholar 

  • Poikane, S. (ed.), 2009. Water Framework Directive intercalibration technical report. Part 2: Lakes. EUR 28838 EN/2, Office for Official Publications of the European Communities, Luxembourg.

  • Preisendorfer, R. W., 1986. Secchi disk science: visual optics of natural waters. Limnology and Oceanography 31: 909–926.

    Article  CAS  Google Scholar 

  • Ptacnik, R., A. G. Solimini & P. Brettum, 2009. Performance of a new phytoplankton composition metric along a eutrophication gradient in Nordic lakes. Hydrobiologia 633: 75–82.

    Article  CAS  Google Scholar 

  • Reichwaldt, E. S. & G. Abrusán, 2007. Influence of food quality on depth selection of Daphnia pulicaria. Journal of Plankton Research 29: 839–849.

    Article  Google Scholar 

  • Reynolds, C. S., 1992. Dynamics, selection and composition of phytoplankton in relation to vertical structure in lakes. Archiv für Hydrobiologie 35: 13–31.

    Google Scholar 

  • Ryding, S. O. & W. Rast, 1989. The Control of Eutrophication of Lakes and Reservoirs. Man and the Biosphere Series. UNESCO, Paris: 314 pp.

  • Salmaso, N., G. Morabito, F. Buzzi, L. Garibaldi, M. Simona & R. Mosello, 2006. Phytoplankton as an indicator of the water quality of the deep lakes south of the Alps. Hydrobiologia 563: 167–187.

    Article  CAS  Google Scholar 

  • Schindler, W. D., 1972. Production of phytoplankton and zooplankton in Canadian Shield Lakes. In Kajak, J. & A. Hillbricht-Ilkowska (eds), Productivity Problems of Freshwaters. PWN Polish Scientific Publishers, Warszawa, Krakow, Poland: 311–333.

  • Schröder, R., 1994. Lake trophic level determination using empirical reductionistic approaches. Limnologica 24: 195–211.

    Google Scholar 

  • SEPA (Swedish Environmental Protection Agency), 2007. Lakes and watercourses. Environmental quality criteria. Swedish Environmental Protection Agency, Stockholm: 104 pp.

  • Soranno, P. A., 1997. Factors affecting the timing of surface scum and epilimnetic blooms of blue-green algae in a eutrophic lake. Canadian Journal of Fisheries and Aquatic Sciences 54: 1965–1975.

    Article  Google Scholar 

  • Tafas, T., D. Danielidis, J. Overbeck & A. Economou-Amilli, 1997. Limnological survey of the warm monomictic lake Trichonis (central western Greece) I. The physical and chemical environment. Hydrobiologia 344: 129–139.

    Article  CAS  Google Scholar 

  • Tilzer, M. M., 1988. Secchi disk – chlorophyll relationships in a lake with highly variable phytoplankton biomass. Hydrobiologia 162: 163–171.

    Article  CAS  Google Scholar 

  • UKTAG (Technical Advisory Group on the Water Framework Directive), 2008. UKTAG lake assessment methods. Phytoplankton. Chlorophyll a and percentage nuisance Cyanobacteria. WFD-UKTAG, Edinburgh: 9 pp.

  • U.S. Environmental Protection Agency, 2006. Glossary. Mid Atlantic Integrated Assessment (MAIA). USEPA, Region 3, USEPA’s Office of Research and Development (http://www.epa.gov/Maia).

  • U.S. Environmental Protection Agency, 2007. Survey of the Nation’s lakes. Field operations manual. EPA 841-B-07-004. U.S. Environmental protection Agency, Washington, DC: 104 pp.

  • Wetzel, R. G., 2001. Limnology. Lake and River Ecosystems, 3rd edn. Academic Press, San Diego: 1006 pp.

  • Wolfram, G. & M. T. Dokulil, 2009. Leitfaden zur Erhebung der Biologischen Qualitätselemente, Seen. Teil B2-01d – Phytoplankton. Handbuch des BMLFUW & des BAW, Wien: 48 pp. (http://wasser.lebensministerium.at/article/articleview/52972/1/5659/).

  • Woods, P. F., 1986. Deep-lying chlorophyll maxima in Big Lake – implications for trophic-state classification in Alaskan lakes. In Kane, D. L. (ed.), Cold Regions Hydrology Symposium, Fairbanks, Alaska, 1986, Proceedings. Alaska Section, American Water Resources Association: 195–200.

Download references

Acknowledgements

The study was supported by the EU FP7 grant 226273 (WISER), by JRC institutional exploratory project of the Action EEWAI, and by SF 0170011508 from Estonian Ministry of Education. Special thanks go to Michela Ghiani, Bruno Paracchini, Joaquin Pinto Grande and Veljo Kisand for field measurements on Italian lakes, and to Fabrizio Sena for chlorophyll analysis. The study of Estonian lakes was supported by the core grant 0370208s98 of the Estonian Ministry of Education and by grant 3579 of the Estonian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peeter Nõges.

Additional information

Handling editor: Luigi Naselli-Flores

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nõges, P., Poikane, S., Kõiv, T. et al. Effect of chlorophyll sampling design on water quality assessment in thermally stratified lakes. Hydrobiologia 649, 157–170 (2010). https://doi.org/10.1007/s10750-010-0237-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0237-4

Keywords

Navigation