Skip to main content

Advertisement

Log in

Periphyton nutrient status in a temperate stream with mixed land-uses: implications for watershed nitrogen storage

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We sampled periphyton communities in a highly productive stream to characterize how longitudinal changes in watershed geology and land use affect periphyton nutrient status and elemental composition. Nutrient status was evaluated from measures of periphyton nutrient composition (carbon, nitrogen, and phosphorus), stable isotope signatures (δ15N and δ13C), and the response of periphyton to experimental enrichment with nitrogen. Biomass and nutrient content increased dramatically from the headwaters to downstream, while tissue nutrient ratios (C:P and C:N) were more consistent and did not indicate strong N- or P-limitation. Nitrogen enrichment experiments did not exhibit a consistent response upstream or downstream, and periphyton C:N:P stoichiometry showed no significant response to N-enrichment. Absolute densities of periphyton N were 5- to 90-fold greater than the overlying N concentrations in stream water (159- to 353-fold greater for P), and the δ15N signal indicates downstream enrichment from likely watershed sources (urban and agriculture land-use). These results suggest that periphyton in Spring Creek are not N-limited and store large quantities of both N and P, which in turn can be transported downstream during high flow events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • American Public Health Association (APHA), 1995. Standard Methods for the Examination of Water and Wastewater: Including Bottom Sediments and Sludges, 20th edn. American Public Health Association, New York.

    Google Scholar 

  • Biggs, B. J. F., 1987. Effects of sample storage and mechanical blending on the quantitative analysis of river periphyton. Freshwater Biology 18: 197–203.

    Article  Google Scholar 

  • Biggs, B. J. F., 2000. Eutrophication of streams and rivers: dissolved nutrient-chlorophyll relationships for benthic algae. Journal of the North American Benthological Society 19: 17–31.

    Article  Google Scholar 

  • Bothwell, M. L., 1985. Phosphorus limitation of lotic periphyton growth rates - an intersite comparison using continuous-flow troughs (Thompson river system, British Columbia). Limnology and Oceanography 30: 527–542.

    Article  Google Scholar 

  • Box, G. E. P. & D. R. Cox, 1964. An analysis of transformations. Journal of the Royal Statistical Society, Series B-Statistical Methodology 26: 211–252.

    Google Scholar 

  • Carrick, H. J., F. J. Aldridge & C. L. Schelske, 1993. Wind influences phytoplankton biomass and composition in a shallow, productive lake. Limnology and Oceanography 38: 1179–1192.

    Google Scholar 

  • Chang, H. & T. N. Carlson, 2005. Water quality during winter storm events in Spring Creek, Pennsylvania USA. Hydrobiologia 544: 321–332.

    Article  CAS  Google Scholar 

  • Chételat, J. & F. R. Pick, 2001. Temporal variability of water chemistry in flowing waters of the northeastern United States: does river size matter? Journal of the North American Benthological Society 20: 331–346.

    Article  Google Scholar 

  • Cross, W. F., J. P. Benstead, P. C. Frost & S. A. Thomas, 2005. Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives. Freshwater Biology 50: 1895–1912.

    Article  CAS  Google Scholar 

  • Dodds, W. K., A. J. Lopez, W. B. Bowden, S. Gregory, N. B. Grimm, S. K. Hamilton, A. E. Hershey, E. Marti, W. H. McDowell, J. L. Meyer, D. Morrall, P. J. Mulholland, B. J. Peterson, J. L. Tank, H. M. Valett, J. R. Webster & W. Wollheim, 2002a. N uptake as a function of concentration in streams. Journal of the North American Benthological Society 21: 206–220.

    Article  Google Scholar 

  • Dodds, W. K., V. H. Smith & K. Lohman, 2002b. Nitrogen and phosphorus relationships to benthic algal biomass in temperate streams. Canadian Journal of Fisheries and Aquatic Sciences 59: 865–874.

    Article  Google Scholar 

  • Droop, M. R., 1973. Some thoughts on nutrient limitation in algae. Journal of Phycology 9: 264–272.

    CAS  Google Scholar 

  • Elser, J. J., D. R. Dobberfuhl, N. A. MacKay & J. H. Schampel, 1996. Organism size, life history, and N:P stoichiometry. Bioscience 49: 674–684.

    Article  Google Scholar 

  • Elser, J. J., W. F. Fagan, R. F. Denno, D. R. Dobberfuhl, A. Folarin, A. Huberty, S. Interlandi, S. S. Kilham, E. McCauley, K. L. Schulz, E. H. Siemann & R. W. Sterner, 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature 408: 578–580.

    Article  PubMed  CAS  Google Scholar 

  • Elser, J. J., K. Acharya, M. Kyle, J. Cotner, W. Makino, T. Markow, T. Watts, S. Hobbie, W. Fagan, J. Schade, J. Hood & R. W. Sterner, 2003. Growth rate-stoichiometry couplings in diverse biota. Ecology Letters 6: 936–943.

    Article  Google Scholar 

  • Fairchild, G. W., R. L. Lowe & W. B. Richardson, 1985. Algal periphyton growth on nutrient-diffusing substrates - an in situ bioassay. Ecology 66: 465–472.

    Article  CAS  Google Scholar 

  • Finlay, J. C., 2001. Stable-carbon-isotope ratios of river biota: implications for energy flow in lotic food webs. Ecology 82: 1052–1064.

    Google Scholar 

  • Fisher, S. G., N. B. Grimm, E. Marti, R. M. Holmes & J. B. Jones, 1998. Material spiraling in stream corridors: a telescoping ecosystem model. Ecosystems 1: 19–34.

    Article  CAS  Google Scholar 

  • Francoeur, S. N., 2001. Meta-analysis of lotic nutrient amendment experiments: detecting and quantifying subtle responses. Journal of the North American Benthological Society 20: 358–368.

    Article  Google Scholar 

  • Frost, P. C., M. A. Evans-White, Z. V. Finkel, T. C. Jensen & V. Matzek, 2005a. Are you what you eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world. Oikos 109: 18–28.

    Article  Google Scholar 

  • Frost, P. C., H. Hillebrand & M. Kahlert, 2005b. Low algal carbon content and its effect on the C:P stoichiometry of periphyton. Freshwater Biology 50: 1800–1807.

    Article  CAS  Google Scholar 

  • Fry, B., 2006. Stable Isotope Ecology. Springer, New York, NY.

    Google Scholar 

  • Godwin, C. M. & H. J. Carrick, 2008. Spatio-temporal variation of periphyton biomass and production in a temperate spring-fed stream. Aquatic Ecology 42: 583–595.

    Article  CAS  Google Scholar 

  • Hillebrand, H. & U. Sommer, 1999. The nutrient stoichiometry of benthic microalgal growth: redfield proportions are optimal. Limnology and Oceanography 44: 440–446.

    Article  Google Scholar 

  • Hillebrand, H., G. de Montpellier & A. Liess, 2004. Effects of macrograzers and light on periphyton stoichiometry. Oikos 106: 93–104.

    Article  Google Scholar 

  • Hoagland, K. D., J. R. Rosowski, M. R. Gretz & S. C. Roemer, 1993. Diatom extracellular polymeric substances: function, fine-structure, chemistry, and physiology. Journal of Phycology 29: 537–566.

    Article  CAS  Google Scholar 

  • Horneck, D. A. & R. O. Miller, 1998. Determination of Total Nitrogen in Plant Tissue. CRC Press, New York.

    Google Scholar 

  • Johnson, R. A. & D. W. Wichern, 2002. Applied Multivariate Statistical Analysis, 5th edn. Prentice Hall, Upper Saddle River.

  • Kahlert, M., 1998. C:N:P ratios of freshwater benthic algae. Archiv Fur Hydrobiologie 51: 105–114.

    CAS  Google Scholar 

  • Kendall, C., S. R. Silva & V. J. Kelly, 2001. Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States. Hydrological Processes 15: 1301–1346.

    Article  Google Scholar 

  • Kuehl, R. O., 2000. Design of Experiments: Statistical Principles of Research Design and Analysis, 2nd edn. Duxbury/Thomson Learning, Pacific Grove, CA.

    Google Scholar 

  • Miller, R. O., 1998. Microwave Digestion of Plant Tissue in a Closed Vessel. CRC Press, New York.

    Google Scholar 

  • Minshall, G. W., K. W. Cummins, R. C. Petersen, C. E. Cushing, D. A. Bruns, J. R. Sedell & R. L. Vannote, 1985. Developments in stream ecosystem theory. Canadian Journal of Fisheries and Aquatic Sciences 42: 1045–1055.

    Article  Google Scholar 

  • Mulholland, P. J., E. R. Marzolf, S. P. Hendricks, R. V. Wilkerson & A. K. Baybayan, 1995. Longitudinal patterns of nutrient cycling and periphyton characteristics in streams: a test of upstream-downstream linkage. Journal of the North American Benthological Society 14: 357–370.

    Article  Google Scholar 

  • Mulholland, P. J., J. L. Tank, D. M. Sanzone, W. M. Wollheim, B. J. Peterson, J. R. Webster & J. L. Meyer, 2000. Food resources of stream macroinvertebrates determined by natural-abundance stable C and N isotopes and a 15N tracer addition. Journal of the North American Benthological Society 19: 145–157.

    Article  Google Scholar 

  • Newbold, J. D., R. V. O’Neill, J. W. Elwood & W. Van Winkle, 1982. Nutrient spiralling in streams: implications for nutrient limitation and invertebrate activity. American Naturalist 120: 628–652.

    Article  Google Scholar 

  • Omernik, J. M., 1987. Ecoregions of the conterminous United States. Annals of the Association of American Geographers 77: 118–125.

    Article  Google Scholar 

  • Paerl, H. W., J. D. Bales, L. W. Ausley, C. P. Buzzelli, L. B. Crowder, L. A. Eby, J. M. Fear, M. Go, B. L. Peierls, T. L. Richardson & J. S. Ramus, 2001. Ecosystem impacts of three sequential hurricanes (Dennis, Floyd, and Irene) on the United States’ largest lagoonal estuary, Pamlico Sound, NC. Proceedings of the National Academy of Sciences of the United States of America 98: 5655–5660.

    Article  PubMed  CAS  Google Scholar 

  • Pan, Y., R. J. Stevenson, B. H. Hill, P. R. Kaufmann & A. T. Herlihy, 1999. Spatial patterns and ecological determinants of benthic algal assemblages in mid-Atlantic streams, USA. Journal of Phycology 35: 460–468.

    Article  Google Scholar 

  • Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18: 293–320.

    Article  Google Scholar 

  • Peterson, B. J., L. Deegan, J. Helfrich, J. E. Hobbie, M. Hullar, B. Moller, T. E. Ford, A. Hershey, A. Hiltner, G. Kipphut, M. A. Lock, D. M. Fiebig, V. McKinley, M. C. Miller, J. R. Vestal, R. Ventullo & G. Volk, 1993. Biological responses of a tundra river to fertilization. Ecology 74: 653–672.

    Article  CAS  Google Scholar 

  • Pringle, C., P. Paaby-Hansen, P. D. Vaux & C. R. Goldman, 1986. In situ nutrient assays of periphyton growth in a lowland Costa Rican stream. Hydrobiologia 134: 207–213.

    Article  CAS  Google Scholar 

  • Stelzer, R. S. & G. A. Lamberti, 2001. Effects of N:P ratio and total nutrient concentration on stream periphyton community structure, biomass, and elemental composition. Limnology and Oceanography 46: 356–367.

    Google Scholar 

  • Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.

    Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Welch, E. B., J. M. Jacoby, R. R. Horner & M. R. Seeley, 1988. Nuisance biomass levels of periphytic algae in streams. Hydrobiologia 157: 161–168.

    CAS  Google Scholar 

  • Woods, A. J., J. M. Omernik, D. D. Brown & C. W. Kiilsgaard, 1996. Level iii and iv ecoregions of Pennsylvania and the Blue Ridge Mountains, the Ridge and Valley, and the Central Appalachians of Virginia, West Virginia, and Maryland. Environmental Protection Agency, EPA/600/R-96/077, Digital Coverage.

Download references

Acknowledgments

We thank M. Johnston-Greenwald and C. Rilk for their technical assistance to the project. CMG was supported in part by funding from the Intercollege Graduate Program in Ecology at Penn State. This research was supported by grants from the United States Geological Survey (Grant # 01HQGR0099) and the Pennsylvania Department of Environmental Protection (Growing Greener grant # 4100034590). Two anonymous reviewers provided beneficial comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hunter J. Carrick.

Additional information

Handling editor: David Hamilton

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godwin, C.M., Arthur, M.A. & Carrick, H.J. Periphyton nutrient status in a temperate stream with mixed land-uses: implications for watershed nitrogen storage. Hydrobiologia 623, 141–152 (2009). https://doi.org/10.1007/s10750-008-9654-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9654-z

Keywords

Navigation