Skip to main content
Log in

Habitat background selection by colonizing intermittent pond invertebrates

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Habitat selection processes by organisms colonizing freshwater bodies have not been commonly studied, despite their obvious relevance to wetland ecology and management. We monitored, weekly, all organisms that appeared in tanks with different backgrounds (brown; white) and substrate/food availability treatments (control; added leaf litter; added algae) floating on the water surface of a natural intermittent pond. The experiment lasted for 14 weeks, from pond filling to pond drying, during which time we collected around 9,000 colonizing insects per m2 (e.g., Diptera, Coleoptera, Hemiptera, and eggs) and a similar number of colonizing non-insects (e.g., Acari, Crustacea, Gastropoda, and ephippia). Non-insects exhibited greatest colonization early in the hydroperiod, correlated with major rain-fall events. Insect colonization was low at first, peaked in late May, and thereafter remained high until the pond dried. Most ovipositing female insects (especially chironomids) were attracted to tanks with a dark background or those containing decomposing dark leaves, although there were exceptions related to taxon (e.g., beetles) and hydroperiod. Non-insects showed treatment preferences similar to the insects, with cladoceran ephippia appearing more in the Leaf treatment. Colonization mechanisms were deemed ‘active’ for insects and largely ‘passive’ for the microcrustaceans, and the various possibilities for the latter (heavy rainfall, wind, wildlife) are discussed. For highly dispersive taxa, such as adults of the beetles Helophorus sp. and Anacaena sp. colonization densities at the pond surface were calculated to attain maxima of around 26 and 33 m−2 respectively, in early May.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bentley, M. D. & J. F. Day, 1989. Chemical ecology and behavioural aspects of mosquito oviposition. Annual Review of Entomology 34: 401–421.

    Article  PubMed  CAS  Google Scholar 

  • Bilton, D. T., J. R. Freeland & B. Okamura, 2001. Dispersal in freshwater invertebrates. Annual Review of Ecology and Systematics 32: 159–181.

    Article  Google Scholar 

  • Blaustein, L., M. Kiflawi, A. Eitam, M. Mangel & J. E. Cohen, 2004. Oviposition habitat selection in response to risk of predation in temporary pools: mode of detection and consistency across experimental venue. Oecologia 138: 300–305.

    Article  PubMed  Google Scholar 

  • Bohonak, A. J. & H. H. Whiteman, 1999. Dispersal of the fairy shrimp Branchinecta coloradensis (Anostraca): effects of hydroperiod and salamanders. Limnology and Oceanography 44: 487–493.

    Article  Google Scholar 

  • Brendonck, L. & B. J. Riddoch, 1999. Wind-borne short-range egg dispersal in anostracans (Crustacea: Branchiopoda). Biological Journal of the Linnean Society 67: 87–95.

    Article  Google Scholar 

  • Brooks, J. L., 1959. Cladocera. In Edmondson, W. T. (ed.), Freshwater Biology, 2nd edn. John Wiley and Sons Inc., New York, 587–656.

  • Buxton, P. A. & G. H.E. Hopkins, 1927. Researches in Polynesia and Melanesia. Memoirs of the London School of Tropical Medicine and Hygiene 1: 1–260.

    Google Scholar 

  • Claussen, D. L., R. A. Hopper & M. A. Sanker, 2000. The effects of temperature, body size, and hydration state on the terrestrial locomotion of the crayfish Orconectes rusticus. Journal of Crustacean Biology 20: 218–223.

    Article  Google Scholar 

  • Clemens, A. N., 1963. The Physiology of Mosquitoes. MacMillan, New York.

    Google Scholar 

  • Corbet, P. S., 1999. Dragonflies: Behaviour and Ecology of Odonata. Comstock Publishing Associates, Cornell University Press, Ithaca, New York.

    Google Scholar 

  • Davis, E. E. & F. M. Bowen, 1994. Sensory physiological basis for attraction in mosquitoes. Journal of the American Mosquito Control Association 10: 316–325.

    PubMed  CAS  Google Scholar 

  • Fernando, C. H., 1958. The colonization of small freshwater habitats by aquatic insects. I. General discussion, methods and colonization in the aquatic Coleoptera. Ceylon Journal of Science (Biological Sciences) 1: 117–154.

    Google Scholar 

  • Fernando, C. H. & D. F. Galbraith, 1973. Seasonality and dynamics of aquatic insects colonising small habitats. Verhandlungen der Internationalen Verinigung für Theoretische und Angewandte Limnologie 52: 1564–1575.

    Google Scholar 

  • Green, A. J., J. Figuerola & M. I. Sanchez, 2002. Implications of waterbird ecology for the dispersal of aquatic organisms. Acta Oecologica 23: 177–189.

    Article  Google Scholar 

  • Hazzard, E. I., M. S. Meyer & K. E. Savage, 1967. Attraction and oviposition stimulation of gravid mosquitoes by bacteria isolated from hay infusions. Journal of the American Mosquito Control Association 27: 133–136.

    Google Scholar 

  • Hogg, I. D., D. D. Williams, J. M. Eadie & S. A. Butt, 1995. The consequences of global warming for stream invertebrates: a field simulation. Journal of Thermal Biology 20: 199–206.

    Article  Google Scholar 

  • Hughes, J. M., P. B. Mather, A. L. Sheldon & F. W. Allendorf, 1999. Genetic structure of the stonefly, Yoraperla brevis, populations: the extent of gene flow amongst adjacent montane streams. Freshwater Biology 41: 63–72.

    Article  Google Scholar 

  • Jones, R. E., 1974. The effects of size selective predation and environmental variation on the distribution and abundance of a chironomid Paraborniella tonnoiri Freeman. Australian Journal of Zoology 22: 71–89.

    Article  Google Scholar 

  • Kriska, G., G. Horvath & S. Andrikovics, 1998. Why do mayflies lay their eggs en-masse on dry asphalt roads: water-imitating polarized-light reflected from asphalt attracts Ephemeroptera. Journal of Experimental Biology 201: 2273–2286.

    PubMed  CAS  Google Scholar 

  • Lake, P. S., I. A.E. Bayly & D. W. Morton, 1989. The phenology of a temporary pond in western Victoria, Australia, with special reference to invertebrate succession. Archiv für Hydrobiologie 115: 171–202.

    Google Scholar 

  • Landin, J., 1968. Weather and diurnal periodicity of flight by Helophorus brevipalis Bedel (Coleoptera: Hydrophilidae). Opuscula Entomologica 33: 28–36.

    Google Scholar 

  • Moorhead, D. L., D. L. Hall & M. R. Willig, 1998. Succession of macroinvertebrates in playas of the Southern High Plains. Journal of the North American Benthological Society 17: 430–442.

    Article  Google Scholar 

  • Nurnberger, B., 1996. Local dynamics and dispersal in a structured population of the whirlygig beetle Dineutus assimilis. Oecologia 106: 325–336.

    Article  Google Scholar 

  • Pajunen, V. I. & A. Jansson, 1969. Dispersal of rockpool corixids Arctocorixa carinata (Sahler) and Callicorixa producta (Reut.) (Heteroptera: Corixidae). Annales Zoologici Fennici 6: 391–427.

    Google Scholar 

  • Paterson, C. G. & C. J. Cameron, 1985. Seasonal dynamics and ecological strategies of the pitcher plant chironomid, Metriocnemus knabi Coq. (Diptera: Chironomidae), in southeast New Brunswick. Canadian Journal of Zoology 60: 3075–3083.

    Article  Google Scholar 

  • Peckarsky, B. L., B. W. Taylor & C. C. Caudill, 2000. Hydrologic and behavioural constraints on oviposition of stream insects: implications for adult dispersal. Oecologia 125: 186–200.

    Article  Google Scholar 

  • Popham, E. J., 1953. Observations on the migration of corixids (Hemiptera) into a new aquatic habitat. Entomologist’s Monthly Magazine 89: 124–125.

    Google Scholar 

  • Poulin, R., 1995. Clutch size and egg size in free-living and parasitic copepods: a comparative analysis. Evolution 49: 325–336.

    Article  Google Scholar 

  • Schneider, D. W. & T. M. Frost, 1996. Habitat duration and community structure in temporary ponds. Journal of the North American Benthological Society 15: 64–86.

    Article  Google Scholar 

  • Schwind, R., 1995. Spectral regions in which aquatic insects see reflected polarized light. Journal of Comparative Physiology, Series A 177: 439–448.

    Google Scholar 

  • Southwood, T. R. E. & P. A. Henderson, 2000. Ecological Methods. Blackwell Scientific, Oxford.

    Google Scholar 

  • Stevens, M. M., G. N. Warren & B. D. Braysher, 2003. Oviposition response of Chironomus tepperi to nitrogenous compounds and bioextracts in two-choice laboratory tests. Journal of Chemical Ecology 29: 911–920.

    Article  PubMed  CAS  Google Scholar 

  • Talling, J. F., 1951. The element of chance in pond populations. Naturalist 4: 157.

    Google Scholar 

  • Turner, D. & D. D. Williams, 2000. Invertebrate movements within a small stream: density dependence or compensating for drift? Internationale Review Hydrobiologie 85: 141–156.

    Article  Google Scholar 

  • Williams, D. D., 2006. The Biology of Temporary Waters. Oxford University Press, Oxford.

    Google Scholar 

Download references

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada for funding the study, and Dr. and Mrs. P. van Nostrand for permission to work on their property.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Dudley Williams.

Additional information

Handling editor: S. Declerck

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, D.D., Heeg, N. & Magnusson, A.K. Habitat background selection by colonizing intermittent pond invertebrates. Hydrobiologia 592, 487–498 (2007). https://doi.org/10.1007/s10750-007-0793-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-007-0793-4

Keywords

Navigation