Skip to main content
Log in

Seasonal nutrient and plankton dynamics in a physical-biological model of Crater Lake

  • Crater Lake, Oregon
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A coupled 1D physical-biological model of Crater Lake is presented. The model simulates the seasonal evolution of two functional phytoplankton groups, total chlorophyll, and zooplankton in good quantitative agreement with observations from a 10-year monitoring study. During the stratified period in summer and early fall the model displays a marked vertical structure: the phytoplankton biomass of the functional group 1, which represents diatoms and dinoflagellates, has its highest concentration in the upper 40 m; the phytoplankton biomass of group 2, which represents chlorophyta, chrysophyta, cryptomonads and cyanobacteria, has its highest concentrations between 50 and 80 m, and phytoplankton chlorophyll has its maximum at 120 m depth. A similar vertical structure is a reoccurring feature in the available data. In the model the key process allowing a vertical separation between biomass and chlorophyll is photoacclimation. Vertical light attenuation (i.e., water clarity) and the physiological ability of phytoplankton to increase their cellular chlorophyll-to-biomass ratio are ultimately determining the location of the chlorophyll maximum. The location of the particle maxima on the other hand is determined by the balance between growth and losses and occurs where growth and losses equal. The vertical particle flux simulated by our model agrees well with flux measurements from a sediment trap. This motivated us to revisit a previously published study by Dymond et al. (1996). Dymond et al. used a box model to estimate the vertical particle flux and found a discrepancy by a factor 2.5–10 between their model-derived flux and measured fluxes from a sediment trap. Their box model neglected the exchange flux of dissolved and suspended organic matter, which, as our model and available data suggests is significant for the vertical exchange of nitrogen. Adjustment of Dymond et al.’s assumptions to account for dissolved and suspended nitrogen yields a flux estimate that is consistent with sediment trap measurements and our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andersen, T. & D. O. Hessen, 1991. Carbon, nitrogen and phosphorus content of freshwater zooplankton. Limnology and Oceanography 36: 807–814.

    Article  CAS  Google Scholar 

  • Andersen, V., P. Nival & R. Harris, 1987. Modelling of a planktonic ecosystem in an enclosed water column. Journal of the Marine Biological Association of the U.K. 67: 407–430.

    Article  Google Scholar 

  • Boss, E., R. Collier, G. Larson, K. Fennel & W. S. Pegau, this issue. Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake.

  • Botte, V. & A. Kay, 2000. A numerical study of plankton population dynamics in a deep lake during the passage of the spring thermal bar. Journal of Marine Systems 26: 367–386.

    Article  Google Scholar 

  • Brett, M. T., D. C. Mueller-Navarra & S.-K. Park, 2000. Empirical analysis of the effect of phosphorus limitation on algal food quality for freshwater zooplankton. Limnology and Oceanography 45: 1564–1575.

    Article  CAS  Google Scholar 

  • Collier, R. W., J. Dymond & J. McManus, 1991. Studies of hydrothermal processes in Crater Lake, Oregon. College of Oceanography Report, 90. Oregon State University.

  • Crawford, G. B. & R. W. Collier, 1997. Observations of a deep-mixing event in Crater Lake, Oregon. Limnology and Oceanography 42: 299–306.

    Google Scholar 

  • Cullen, J. J., P. J. Neale & M. P. Lesser, 1992. Biological weighting functions for the inhibition of phytoplankton photosynthesis by ultraviolet radiation. Science 258: 646–650.

    Article  CAS  PubMed  Google Scholar 

  • Dymond, J., R. Collier & J. McManus, 1996. Unbalanced particle flux budgets in Crater Lake, Oregon: Implications for edge effects and sediment focusing in lakes. Limnology and Oceanography 41: 732–743.

    CAS  Google Scholar 

  • Fasham M. J. R., 1993. Modelling marine biota. In Heimann M. (ed.), The Global Carbon Cycle. Springer Verlag, New York, 457–504.

    Google Scholar 

  • Fasham M. J. R., 1995. Variations in the seasonal cycle of biological production in subarctic oceans: A model sensitivity analysis. Deep-Sea Research I 42: 1111–1149.

    Article  CAS  Google Scholar 

  • Fennel K., 1999. Convection and the timing of the phytoplankton spring bloom in the Western Baltic Sea. Estuarine, Coastal and Shelf Sciences 49: 113–128.

    Article  CAS  Google Scholar 

  • Fennel K. & E. Boss, 2003. Subsurface maxima of phytoplankton and chlorophyll: Steady state solutions from a simple model. Limnology and Oceanography 48: 1521–1534.

    Google Scholar 

  • Garcia-Pichel F., 1994. A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnology and Oceanography 39: 1704–1717.

    Google Scholar 

  • Geider R. J., H. L. McIntyre & T. M. Kana, 1996. A dynamic model of photoadaptation in phytoplankton. Limnology and Oceanography 41: 1–15.

    CAS  Google Scholar 

  • Geider R. J., H. L. McIntyre & T. M. Kana, 1997. Dynamic model of phytoplankton growth and acclimation: Responses of the balanced growth rate and the chlorophyll a:carbon ratio to light, nutrient-limitation and temperature. Marine Ecology Progress Series 148: 187–200.

    Google Scholar 

  • Geider R. J., H. L. McIntyre & T. M. Kana, 1998. A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients and temperature. Limnology and Oceanography 43: 679–694.

    CAS  Google Scholar 

  • Herndl G. J., G. Müller-Niklas & J. Frick, 1993. Major role of ultraviolet-b in controlling bacterioplankton in the surface layer of the ocean. Nature 361: 717–719.

    Article  Google Scholar 

  • Jones R. & E. W. Henderson, 1986. The dynamics of nutrient regeneration and simulation studies of the nutrient cycle. Journal du Conceil 43: 216–236.

    Google Scholar 

  • Karentz D., J. E. Cleaver & D. L. Mitchell, 1991. Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolat-B radiation. Journal of Phycology 27: 326–341.

    Article  CAS  Google Scholar 

  • Lane J. L. & C. R. Goldman, 1984. Size-fractionation of natural phytoplankton communities in nutrient bioassay studies. Hydrobiologia 118: 219–223.

    CAS  Google Scholar 

  • Large W. G. & S. Pond, 1982. Sensible and latent heat flux measurements over the ocean. Journal of Physical Oceanography 12: 464–482.

    Article  Google Scholar 

  • Large W. G., J. C. McWilliams & S. C. Doney, 1994. Oceanic vertical mixing: A review and a model with non-local boundary layer parameterization. Reviews of Geophysics 32: 363–403.

    Article  Google Scholar 

  • Larson, G. L., this issue. Overview over the Crater Lake program.

  • Larson, G. L., C. D. McIntire, R. E. Truitt, M. W. Buktenica & K. E. Thomas, 1993. Zooplankton assemblages in Crater Lake. US Department of the Interior. Report, NPS/PNROSU/NRTR-93/03.

  • Larson, G. L., C. D. McIntire, M. Hurley & M. W. Buktenica, 1996a. Temperature, water chemistry, and optical properties of Crater Lake. Lake and Reservoir Management 12: 230–247.

    CAS  Google Scholar 

  • Larson, G. L., C. D. McIntire, R. E. Truitt, M. W. Buktenica & E. Karnaugh-Thomas, 1996b. Zooplankton assemblages in Crater Lake, Oregon, USA. Lake and Reservoir Management 12: 281–297.

    Google Scholar 

  • Litchman, E., P. J. Neale & A. T. Banaszak, 2002. Increased sensitivity to ultraviolet radiation in nitrogen-limited dinoflagellates: Photoprotection and repair. Limnology and Oceanography 47: 86–94.

    CAS  Google Scholar 

  • Lorenzen, C. J., 1979. Ultraviolet radiation and phytoplankton photosynthesis. Limnology and Oceanography 24: 1117–1124.

    Google Scholar 

  • McIntire, C. D., G. L. Larson, R. E. Truitt & M. K. Debacon, 1996. Taxonomic structure and productivity of phytoplankton assemblages in Crater Lake, Oregon. Lake and Reservoir Management 12: 259–280.

    Article  Google Scholar 

  • McIntire, C. D., G. L. Larson & R. E. Truitt, this issue. Taxonomic composition and production dynamics of phytoplankton assemblages in Crater Lake, Oregon.

  • McManus, J., R. W. Collier & J. Dymond, 1993. Mixing processes in Crater Lake, Oregon. Journal of Geophysical Research 98C: 18295–18307.

    Google Scholar 

  • McManus, J., R. Collier, J. Dymond, C. G. Wheat & G. Larson, 1996. Spatial and temporal distribution of dissolved oxygen in Crater Lake, Oregon. Limnology and Oceanography 41: 722–731.

    CAS  Google Scholar 

  • Moloney, C. L. & J. G. Field, 1991. The size-based dynamics of plankton food webs. I. A simulation of carbon and nitrogen flows. Journal of Plankton Research 13: 1003–1038.

    Google Scholar 

  • Moore, L. R. & S. W. Chisholm, 1999. Photophysiology of the marine cyanobacterium prochlorochoccus: Ecotypic differences among cultured isolates. Limnology and Oceanography 44: 628–638.

    Google Scholar 

  • Moskilde, E., 1996. Topics in Non-linear Dynamics: Application to Physics, Biology and Economic Systems. World Scientific Publishing Co., London, U.K.

    Google Scholar 

  • Palmer, J. R. & I. J. Totterdell, 2001. Production and export in a global ocean ecosystem model. Deep-Sea Research I 48: 1169–1198.

    Article  CAS  Google Scholar 

  • Payne, R. E., 1972. Albedo at the sea surface. Journal of Atmospheric Science 29: 959–970.

    Article  Google Scholar 

  • Riley, G. A., H. Stommel & D. F. Bumpus, 1949. Quantitative ecology of the plankton of the western North Atlantic. Bulletin of the Bingham Oceanographic Collection 12: 1–169.

    Google Scholar 

  • Rocha, O. & A. Duncan, 1985. The relationship between cell carbon and cell volume in freshwater algal species used in zooplankton studies. Journal of Plankton Research 7: 279–294.

    Google Scholar 

  • Ross, A. H., W. S. C. Gurney & M. R. Heath, 1994. A comparative study of the ecosystem in four fjords. Limnology and Oceanography 39: 318–343.

    Google Scholar 

  • Simpson, H. J., 1970. Tritium in Crater Lake, Oregon. Journal of Geophysical Research 75: 5195–5207.

    Article  CAS  Google Scholar 

  • Smith, R. C., B. B. Prezelin, K. S. Baker, R. R. Bidigare, N. P. Boucher, T. Coley, D. Karentz, S. MacIntyre, H. A. Matlick, D. Menzies, M. Ondrusek, Z. Wan & K. J. Waters, 1992. Ozone depletion: Ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255: 952–959.

    Article  PubMed  CAS  Google Scholar 

  • Sverdrup, H. U., 1953. On the conditions for the vernal blooming of phytoplankton. Journal du Conseil Permanent International pour l’exploration de la Mer 18: 287–295.

    Google Scholar 

  • Taylor, A. H., 1988. Characteristic properties of models for the vertical distribution of phytoplankton under stratification. Ecological Modelling 40: 175–199.

    Article  CAS  Google Scholar 

  • Taylor, A. H., A. J. Watson, M. Ainsworth, J. E. Robertson & D. R. Turner 1991. A modelling investigation of the role of phytoplankton in the balance of carbon at the surface of the North Atlantic. Global Biogeochemical Cycles 5: 151–171.

    Article  CAS  Google Scholar 

  • Urbach, E., K. L. Vergin, L. Young, A. Morse, G. L. Larson & S. J. Giovannoni, 2001. Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. Limnology and Oceanography 46: 557–572.

    CAS  Google Scholar 

  • Wroblewski, J. S., 1989. A model of the spring bloom in the North Atlantic and its impact on ocean optics. Limnology and Oceanography 34: 1563–1571.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Fennel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fennel, K., Collier, R., Larson, G. et al. Seasonal nutrient and plankton dynamics in a physical-biological model of Crater Lake. Hydrobiologia 574, 265–280 (2007). https://doi.org/10.1007/s10750-006-2615-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-2615-5

Keywords

Navigation