Skip to main content

Advertisement

Log in

Long-term observations of deepwater renewal in Crater Lake, Oregon

  • Crater Lake, Oregon
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We examine observations of key limnological properties (primarily temperature, salinity, and dissolved oxygen), measured over a 14-year period in Crater Lake, Oregon, and discuss variability in the hypolimnion on time scales of days to a decade. During some years (e.g., 1994–1995), higher-than-average wintertime deep convection and ventilation led to the removal of significant amounts of heat and salt from the hypolimnion, while dissolved oxygen concentrations increase. In other years, such as the winter of 1996–1997, heat and salt concentrations increase throughout the year and dissolved oxygen levels drop, indicating conditions were dominated by the background geothermal inputs and dissolved oxygen consumption by bacteria (i.e., minimal deep convection). Over the entire 14 year period, no statistically significant trend was observed in the annual hypolimnetic heat and salt content. Measurements from several thermistors moored in the hypolimnion provide new insight into the time and space scales of the deep convection events. For some events, cool water intrusions are observed sequentially, from shallower depths to deeper depths, suggesting vertical mixing or advection from above. For other events, the cooling is observed first at the deepest sensors, suggesting a thin, cold water pulse that flows along the bottom and mixes more slowly upwards into the basin. In both cases, the source waters must originate from the epilimnion. Conditions during a strong ventilation year (1994–1995) and a weak ventilation year (1996–1997) were compared. The results suggest the major difference between these 2 years was the evolution of the stratification in the epilimnion during the first few weeks of reverse stratification such that thermobaric instabilities were easier to form during 1995 than␣1997. Thus, the details of surface cooling and wind-driven mixing during the early stages of␣reverse stratification may determine the net␣amount of ventilation possible during a particular year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antenucci, J. P. & J. Imberger, 2001. Energetics of long internal gravity waves in large lakes. Limnology and Oceanography 46: 1760–1773.

    Google Scholar 

  • Bacon, C. R. & M. A. Lanphere, 1990. The geological setting of Crater Lake, Oregon. In Drake E. T. et al. (eds), Crater Lake: An Ecosystem Study. American Association for the Advancement of Science: 19–27.

  • Bacon, C. R., J. V. Gardner, L. A. Mayer, M. W. Buktenica, P. Dartnell, D. W. Ramsey & J. E. Robinson, 2002. Morphology, volcanism, and mass wasting in Crater Lake, Oregon. Geological Society of America Bulletin 114: 675–692.

    Article  Google Scholar 

  • Benson B. B. & D. Krause Jr., 1984. The concentration and isotopic fractionation of oxygen in freshwater and seawater in equilibrium with the atmosphere. Limnology and Oceanography 29: 620–632.

    CAS  Google Scholar 

  • Carmack, E. C. & R. F. Weiss, 1991. Convection in Lake Baikal: an example of thermobaric instability. In Chu, P. C. & J. C. Gascard (eds), Deep convection and deep water formation in the oceans. Elsevier: 215–228.

  • Carpenter, J. H., 1965a. The Chesapeake Bay Institute technique for the Winkler dissolved oxygen method. Limnology and Oceanography 10: 141–143.

    CAS  Google Scholar 

  • Carpenter, J. H., 1965b. The accuracy of the Winkler method for dissolved oxygen analysis. Limnology and Oceanography 10: 135–140.

    CAS  Google Scholar 

  • Chen, C. T. & F. J. Millero, 1986. Precise thermodynamic properties for natural waters covering only the limnological range. Limnology and Oceanography 31: 657–662.

    CAS  Google Scholar 

  • Crawford, G. B. & R. W. Collier, 1997. Observations of deep mixing in Crater Lake, Oregon. Limnology and Oceanography 42: 299–306.

    Google Scholar 

  • Dymond, J., R. Collier, J. McManus & G. Larson, 1996. Unbalanced particle flux budgets in Crater Lake, Oregon: Implications for edge effects and sediment focusing in lakes. Limnology and Oceanography 41: 732–743.

    CAS  Google Scholar 

  • Ericksen, C. C., 1985. Implications of ocean bottom reflection for internal wave spectra and mixing. Journal of Physical Oceanography 15: 1145–1156.

    Article  Google Scholar 

  • Fennel, K., R. W. Collier, G. L. Larson, G. B. Crawford & E. Boss, 2007. Seasonal nutrient and plankton dynamics in a physical-biological model of Crater Lake. Hydrobiologia 574: 265–280.

    Google Scholar 

  • Grasshoff, K., M. Ehrhardt & K. Kremling, 1983. Methods of Seawater Analysis (2nd ref. ed.). Verlag Chemie GmbH, Weinheim.

    Google Scholar 

  • Groeger, A. W., 2007. Nutrient limitation in Crater Lake, Oregon. Hydrobiologia 574: 205–216.

    Google Scholar 

  • Hamblin, P. F., C. L. Stevens & G. A. Lawrence, 1999. Simulation of vertical transport in mining pit lake. Journal of Hydraulic Engineering 125: 1029–1038.

    Article  Google Scholar 

  • Holland , P. R., A. Kay & V. Botte, 2001. A numerical study of the dynamics of the riverine thermal bar in a deep lake. Environmental Fluid Mechanics 1: 311–332.

    Article  Google Scholar 

  • Jiang, L. & R. W. Garwood Jr., 1995. A numerical study of three-dimensional dense bottom plumes on a southern ocean continental slope. Journal of Geophysical Research 100: 18471–18488.

    Article  Google Scholar 

  • Kipfer, R., W. Aeschbach-Hertig, M. Hofer, R. Hohmann, D. M. Imboden, H. Baur, V. Gobulev & J. Klerkx, 1996. Bottom-water formation due to hydrothermal activity in Frolikha Bay, Lake Baikal, eastern Siberia. Geochemica et Cosmochimica Acta 60: 961–971.

    Article  CAS  Google Scholar 

  • Knapp, G. P., M. Stalcup & R. J. Stanley, 1990. Automated oxygen titration and salinity determination. WHOI Technical Report, WHOI-90-35, Woods Hole Oceanographic Institution.

  • Larson, G. L., 1996. Development of a 10-year limnological study of Crater Lake, Crater Lake National Park, Oregon, USA. Journal of Lake and Reservoir Management 12: 221–229.

    Google Scholar 

  • Larson, G. L., C. D. McIntire, M. Hurley & M. W. Buktenica, 1996. Temperature, water chemistry, and optical properties of Crater Lake. Journal of Lake and Reservoir Management 12: 230–247.

    CAS  Google Scholar 

  • Larson, G. L., R. L. Hoffman, C. D. McIntire, M. W. Buktenica & S. F. Girdner, 2007. Water quality and optical properties of Crater Lake, Oregon. Hydrobiologia 574: 69–84.

    Google Scholar 

  • Ledwell, J. R. & B. M. Hickey, 1995. Evidence for enhanced boundary mixing in the Santa Monica basin. Journal of Geophysical Research 100: 665–679.

    Google Scholar 

  • Marshall, J. & F. Schott, 1999. Open-ocean convection: observations, theory and models. Reviews of Geophysics 37: 1–64.

    Article  Google Scholar 

  • McIntire, C. D., G. L. Larson, R. E. Truitt & M. K. Debacon, 1996. Taxonomic structure and productivity of phytoplankton assemblages in Crater Lake, Oregon, Crater Lake National Park, Oregon, USA. Journal of Lake and Reservoir Management 12: 259–280.

    Article  Google Scholar 

  • McManus, J., R. W. Collier, C. -T. Chen & J. Dymond, 1992. On the physical properties of Crater Lake, OR: determination of a conductivity and temperature dependent expression for salinity. Limnology and Oceanography 37: 41–53.

    Article  CAS  Google Scholar 

  • McManus, J., R. W. Collier & J. Dymond, 1993. Mixing processes in Crater Lake, Oregon. Journal of Geophysical Research 98: 18295–18307.

    Google Scholar 

  • McManus, J., R. Collier, J. Dymond, C. G. Wheat, G. Larson, 1996. Spatial and temporal distribution of dissolved oxygen in Crater Lake, Oregon. Limnology and Oceanography 41: 722–731.

    CAS  Google Scholar 

  • Mortimer, C. H., 1981. The oxygen content of air-saturated fresh waters over ranges of temperature and atmospheric pressure of limnological interest. Mitteilungen-Internationale Vereingung fuer Theoretische und Angewandte Limnologie 22: 23.

    Google Scholar 

  • Nathenson, M., 1992. Water balance for Crater Lake, Oregon. USGS Open File Rept. 920595.

  • Neal , V. T., S. J. Neshyba & W. W. Denner, 1971. Temperature microstructure in Crater Lake, Oregon. Limnology and Oceanography 16: 695–700.

    Google Scholar 

  • Peeters, F., G. Piepke, R. Kipfer, R. Hohmann & D. M. Imboden, 1996. Description of stability and neutrally buoyant transport in freshwater lakes. Limnology and Oceanography 41: 1711–1724.

    Google Scholar 

  • Peeters, F., D. Finger, M. Hofer, M. Brennwald, D. M. Livingstone & R. Kipfer, 2003. Deep-water renewal in Lake Issyk-Kul driven by differential cooling. Limnology and Oceanography 48: 1419–1431.

    Google Scholar 

  • Phillips, K. N., 1968. Hydrology of Crater Lake, East Lake, and Davis Lakes, Oregon. U.S. Geol. Surv. Water-Supply Pap. 1859-E.

  • Ravens, T. M., O. Koscis, A. Wuest & N. Granin, 2000. Small-scale turbulence and vertical mixing in Lake Baikal. Limnology and Oceanography 45: 159–173.

    Google Scholar 

  • Redmond, K. T., 1990. Crater Lake climate and lake level variability. In Drake E. T. et al. (eds), Crater Lake: An Ecosystem Study. AAAS: 127–142.

  • Shimaraev, M. N., N. G. Granin & A. A. Zhdanov, 1993. Deep ventilation of Lake Baikal due to spring thermal bars. Limnology and Oceanography 38: 1068–1072.

    Google Scholar 

  • Walker, S. J. & R. G. Watts, 1995. A three-dimensional numerical model of deep ventilation in temperate lakes. Journal of Geophysical Research 100: 22,711–22,731.

    Google Scholar 

  • Williams, D. L. & R. P. Von Herzen, 1983. On the terrestrial heat flow and physical limnology of Crater Lake, Oregon. Journal of Geophysical Research 88: 1094–1104.

    Article  Google Scholar 

  • Wuest , A., D. C. Van Senden, J. Imberger, G. Piepke & M. Gloor, 1995. Comparison of diapycnal diffusivity measured by tracer and microstructure techniques. Dynamics of Atmospheres and Oceans 24: 27–39.

    Article  Google Scholar 

  • Wuest, A., T. M. Ravens, N. G. Granin, O. Kocsis, M. Schurter & M. Sturm, 2005. Cold intrusions in Lake Baikal: direct observational evidence for deep-water renewal. Limnology and Oceanography 50: 184–196.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crawford, G.B., Collier, R.W. Long-term observations of deepwater renewal in Crater Lake, Oregon. Hydrobiologia 574, 47–68 (2007). https://doi.org/10.1007/s10750-006-0345-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-0345-3

Keywords

Navigation