Skip to main content

Advertisement

Log in

Interaction of hydrology and nutrient limitation in the Ridge and Slough landscape of the southern Everglades

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Extensive portions of the southern Everglades are characterized by series of elongated, raised peat ridges and tree islands oriented parallel to the predominant flow direction, separated by intervening sloughs. Tall herbs or woody species are associated with higher elevations and shorter emergent or floating species are associated with lower elevations. The organic soils in this “Ridge-and-Slough” landscape have been stable over millennia in many locations, but degrade over decades under altered hydrologic conditions. We examined soil, pore water, and leaf phosphorus (P) and nitrogen (N) distributions in six Ridge and Slough communities in Shark Slough, Everglades National Park. We found P enrichment to increase and N to decrease monotonically along a gradient from the most persistently flooded sloughs to rarely flooded ridge environments, with the most dramatic change associated with the transition from marsh to forest. Leaf N:P ratios indicated that the marsh communities were strongly P-limited, while data from several forest types suggested either N-limitation or co-limitation by N and P. Ground water stage in forests exhibited a daytime decrease and partial nighttime recovery during periods of surface exposure. The recovery phase suggested re-supply from adjacent flooded marshes or the underlying aquifer, and a strong hydrologic connection between ridge and slough. We therefore developed a simple steady-state model to explore a mechanism by which a phosphorus conveyor belt driven by both evapotranspiration and the regional flow gradient can contribute to the characteristic Ridge and Slough pattern. The model demonstrated that evapotranspiration sinks at higher elevations can draw in low concentration marsh waters, raising local soil and water P concentrations. Focusing of flow and nutrients at the evapotranspiration zone is not strong enough to overcome the regional gradient entirely, allowing the nutrient to spread downstream and creating an elongated concentration plume in the direction of flow. Our analyses suggest that autogenic processes involving the effects of initially small differences in topography, via their interactions with hydrology and nutrient availability, can produce persistent physiographic patterns in the organic sediments of the Everglades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • B. Beckage W. J. Platt M.G. Slocum B. Panko (2003) ArticleTitleInfluence of the El Nino southern-oscillation on fire regimes in the Florida Everglades Ecology 84 3124–3130

    Google Scholar 

  • B. L. M. Bedford M. R. Walbridge A. Aldous (1999) ArticleTitlePatterns in nutrient availability and plant diversity of temperate North American wetlands Ecology 80 2151–2169 Occurrence Handle10.2307/176900

    Article  Google Scholar 

  • C. A. Black (1968) Soil–Plant Relationships EditionNumber2 Wiley New York 792

    Google Scholar 

  • G. R. Blake K. H. Hartge (1986) Bulk density A. Klute (Eds) Methods of Soil Analysis, Part I Physical and Minerological Methods EditionNumber2 American Society of Agronomy Madison, Wisconsin, USA 363–375

    Google Scholar 

  • D. E. Busch W. F. Loftus O. L. Bass SuffixJr. (1998) ArticleTitleLong-term hydrologic effects on marsh plant community structure in the southern Everglades Wetlands 18 230–241

    Google Scholar 

  • J. M. Caffrey W. M. Kemp (1990) ArticleTitleNitrogen cycling in sediments with estuarine populations of Potamogeton pefoliatus and Zostera marina Marine Ecology Progress Series 66 147–160 Occurrence Handle1:CAS:528:DyaK3MXhvFWqsLc%3D

    CAS  Google Scholar 

  • I. A. Calder (1998) ArticleTitleWater use by forests, limits and controls Tree Physiology 18 625–631 Occurrence Handle12651351

    PubMed  Google Scholar 

  • D. L. Childers R. F. Doren R. Jones G. B. Noe M. Rugge L. J. Scinto (2003) ArticleTitleDecadal change in vegetation and soil phosphorus pattern across the Everglades landscape Journal of Environmental Quality 32 344–362 Occurrence Handle12549575 Occurrence Handle1:CAS:528:DC%2BD3sXlslKruw%3D%3D Occurrence Handle10.2134/jeq2003.0344

    Article  PubMed  CAS  Google Scholar 

  • Clark, M. W. & K. R. Reddy, 2003. Spatial variability and modeling of soil accretion in Shark Slough. Report to the Everglades National Park, Agency Contract # H5000 01 0494.

  • R. J. Daoust D. L. Childers (1999) ArticleTitleControls on emergent macrophytic composition, abundance, and productivity in freshwater Everglades wetland communities Wetlands 19 262–275

    Google Scholar 

  • Davis, J. R. Jr., 1946. The peat deposits of Florida: Florida Geological Survey. Bulletin 30, 247 pp.

    Google Scholar 

  • W. E. Dean (1974) ArticleTitleDetermination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods Journal of Sedimentology Petrology 44 242–248 Occurrence Handle1:CAS:528:DyaE2cXkt1Snurg%3D

    CAS  Google Scholar 

  • R. F. Doren T. V. Armentano L. D. Whiteaker R. D. Jones (1997) ArticleTitleMarsh vegetation patterns and soil phosphorus gradients in the Everglades ecosystem Aquatic Botany 56 145–163 Occurrence Handle1:CAS:528:DyaK2sXisleiu7o%3D Occurrence Handle10.1016/S0304-3770(96)01079-0

    Article  CAS  Google Scholar 

  • Engel, V., E. G. Jobbágy, M. Stieglitz, M. Williams & R. B. Jackson, 2005. Hydrological consequences of Eucalyptus afforestation in the Argentine Pampas. Water Resources Research 41: W10409, doi:10.1029/2004WR003761.

  • ENP (Everglades National Park), 2005. South Florida Natural Resources Center Physical Data Base, http://www.sfnrc.ever.nps.gov/.

  • Fish, J. E., M. Stewart, 1991. Hydrogeology of the surficial aquifer system, Dade County, Florida. United States Geological Survey Water Resources Investigation Report # 90–4108. 50 pp.

  • R. F. Fisher R. P. Eastburn (1974) ArticleTitleAfforestation alters prairie soil nitrogen status Soil Science Society of America Proceedings 38 366–368 Occurrence Handle1:CAS:528:DyaE2cXhsVCksLw%3D Occurrence Handle10.2136/sssaj1974.03615995003800020040x

    Article  CAS  Google Scholar 

  • D. R. Foster G. A. King P. H. Glaser H. E. Wright SuffixJr. (1983) ArticleTitleOrigin of string patterns in boreal peatlands Nature 306 256–258 Occurrence Handle10.1038/306256a0

    Article  Google Scholar 

  • D. R. Foster H. E. Wright M. Thelaus G. A. King (1988) ArticleTitleBog development and landform dynamics in central Sweden and southeastern Labrador, Canada Journal of Ecology 76 1164–1185 Occurrence Handle10.2307/2260641

    Article  Google Scholar 

  • E. E. Gaiser L. J. Scinto J. H. Richards K. Jayachandran D. L. Childers J. C. Trexler R. D. Jones (2004) ArticleTitlePhosphorus in periphyton mats provides the best metric for detecting low-level P enrichment in an oligotrophic wetland Water Research 38 507–516 Occurrence Handle14723918 Occurrence Handle1:CAS:528:DC%2BD2cXit1SrsQ%3D%3D Occurrence Handle10.1016/j.watres.2003.10.020

    Article  PubMed  CAS  Google Scholar 

  • German E. R., 2000. Regional Evaluation of Evapotranspiration in the Everglades. US Geological Survey, Report # 00–4217 Tallahassee Florida, USA.

  • Givnish, T. J. & J. C. Volin, 2003. Self-assembly of Slough-Ridge-Tree island landscapes in the central Everglades: a model for the integration of Hydrological and Ecological Processes. Joint Conference on the Science and Restoration of the Greater Everglades and Florida Bay Ecosystem April 13–18, 2003. Palm Harbor, Florida, USA. Abstract.

  • P. J. Gleason P. Stone (1994) Age, origin, and landscape evolution of the Everglades peatland S. M. Davis J. C. Ogden (Eds) Everglades: The Ecosystem and its Restoration St. Lucie Press, Delray Beach Florida, USA 149–197

    Google Scholar 

  • Gunderson, L. H., 1989. Historical hydropatterns in wetland communities in Everglades National Park. In Sharitz, R. R. & J. W. Gibbons, (eds.), Freshwater Wetlands and Wildlife. CONF-8603101, DOE Symposium Series No. 61: 1099–1111.

  • H. M. Haitjema (1995) Analytic element modeling of groundwater flow Academic Press, Inc San Diego, CA, USA

    Google Scholar 

  • J. W. Harvey S. L. Krupa J. M. Kress (2004) ArticleTitleGround water recharge and discharge in the Central Everglades Ground Water 42 1090–1102 Occurrence Handle10.1111/j.1745-6584.2004.tb02646.x

    Article  Google Scholar 

  • E. G. Jobbágy R. B. Jackson (2004) ArticleTitleGroundwater use and salinization with grassland afforestation Global Change Biology 10 1299–1312 Occurrence Handle10.1111/j.1365-2486.2004.00806.x

    Article  Google Scholar 

  • Jones, L. A., R. V. Allison & G. D. Ruehle, 1948. Soils, geology, and water control in the Everglades region: University of Florida Agricultural Experiment Station Bulletin 442, 168 pp.

  • F. M. Kelliher R. Leuning E. D. Schulze (1993) ArticleTitleEvaporation and canopy characteristics of coniferous forests and grasslands Oecologia 95 153–163 Occurrence Handle10.1007/BF00323485

    Article  Google Scholar 

  • G. Keppel (1973) Design and Analysis: A Researcher’s Handbook Prentice Hall Inc Englewood Cliffs, NJ, USA

    Google Scholar 

  • R. S. King C. J. Richardson D. L. Urban E. A. Romanowicz (2004) ArticleTitleSpatial dependency of vegetation-environment linkages in an anthropogenically influenced wetland ecosystem Ecosystems 7 75–97 Occurrence Handle1:CAS:528:DC%2BD2cXjtFCqs7g%3D Occurrence Handle10.1007/s10021-003-0210-4

    Article  CAS  Google Scholar 

  • M. S. Koch K. R. Reddy (1992) ArticleTitleDistribution of soil and plant nutrients along a trophic gradient in the Florida Everglades Soil Science Society of America Journal 56 1492–1499 Occurrence Handle10.2136/sssaj1992.03615995005600050026x

    Article  Google Scholar 

  • W. Koerselman A. F. M. Meuleman (1996) ArticleTitleThe vegetation N:P ratio: a new tool to detect the nature of nutrient limitation Journal of Applied Ecology 33 1441–1450 Occurrence Handle10.2307/2404783

    Article  Google Scholar 

  • R. C. Leighty J. R. Henderson (1958) Soil Survey (detailed reconnaissance) of Dade County, Florida . Series 1947, No. 4 USDA Soil Conservation Service Washington, DC, USA

    Google Scholar 

  • S. S. Light J. W. Dineen (1994) Water control in the Everglades: a historical perspective S. M. Davis J. C. Ogden (Eds) Everglades: The Ecosystem and its Restoration St. Lucie Press Delray Beach, Florida, USA, 47–84

    Google Scholar 

  • K. J. McGlathery P. Berg R. Marino (2001) ArticleTitleUsing porewater profiles to assess nutrient availability in seagrass-vegetated carbonate sediments Biogeochemistry 56 239–263 Occurrence Handle1:CAS:528:DC%2BD38Xht1yrtL4%3D Occurrence Handle10.1023/A:1013129811827

    Article  CAS  Google Scholar 

  • E. O. McLean (1982) Soil pH and lime requirement A. L. Page R. H. Miller R. D. Keeney (Eds) Methods of Soil Analysis. 2. Chemical and Microbiological Properties. Agronomy Monograph No 9 EditionNumber2 Soil Science Society of America Madison, Wisconsin, USA 199–209

    Google Scholar 

  • S. L. Miao W. F. DeBusk (1999) Effects of phosphorus enrichment on structure and function of sawgrass and cattail communities in the Everglades K. R. Reddy G. A. O’Connor C. L. Schelske (Eds) Phosphorus Biogeochemistry in Subtropical Ecosystems Lewis Publishers New York, USA

    Google Scholar 

  • S. Mitchell-Bruker J. Bazante D. Childers L. Leonard M. Ross H. Solo-Gabriele R. Snow S. Stothoff (2005) Effect of Hydrology on Everglades Ridge and Slough Community Report to Everglades National Park Homestead, Florida, USA

    Google Scholar 

  • S. Newman K. Pietro (2001) ArticleTitlePhosphorus storage and release in response to flooding: implications for Everglades stormwater treatment areas Ecological Engineering 18 23–38 Occurrence Handle10.1016/S0925-8574(01)00063-5

    Article  Google Scholar 

  • S. Newman J. B. Grace J. W. Koebel (1996) ArticleTitleEffects of nutrients and hydroperiod on Typha, Cladium, and Eleocharis: implications for Everglades restoration Ecological Applications 6 774–783 Occurrence Handle10.2307/2269482

    Article  Google Scholar 

  • S. Newman J. Schuette J. B. Grace K. Rutchey T. Fontaine K. R. Reddy M. Pietrucha (1998) ArticleTitleFactors influencing cattail abundance in the northern Everglades Aquatic Botany 60 265–280 Occurrence Handle10.1016/S0304-3770(97)00089-2

    Article  Google Scholar 

  • G. B. Noe D. L. Childers R. D. Jones (2001) ArticleTitlePhosphorus biogeochemistry and the impact of phosphorus enrichment: why is the Everglades so unique? Ecosystems 4 603–624 Occurrence Handle1:CAS:528:DC%2BD38Xjsl2itQ%3D%3D Occurrence Handle10.1007/s10021-001-0032-1

    Article  CAS  Google Scholar 

  • I. C. Olmsted T. V. Armentano (1997) Vegetation of Shark Slough, Everglades National Park. Technical Report # SFNRC 97–001 South Florida Natural Resource Center Everglades National Park, Homestead, Florida, USA

    Google Scholar 

  • W. H. Orem D. A. Willard H. E. Lerch A. L. Bates A. Boylan M. Comm (2002) Nutrient geochemistry of sediments from two tree islands in Water Conservation Area 3B, the Everglades, Florida F. Sklar A. van der ParticleValk (Eds) Tree Islands of the Everglades Kluwer Academic Publishers Dordrecht, The Netherlands 153–186

    Google Scholar 

  • Parker, F. W., J. R. Adams, K. G. Clark, K. D. Jacob & A. L. Mehring, 1946. Fertilizers and Lime in The United States: Resources, Production, Marketing, and Use. US Department of Agriculture, Miscellaneous Publication # 586, 56 pp.

  • J. Pastor J. D. Aber C. A. McClaugherty (1984) ArticleTitleAboveground production and nitrogen and phosphorus cycling along a nitrogen mineralization gradient on Blackhawk island, Wisconsin Ecology 65 256–268 Occurrence Handle1:CAS:528:DyaL2cXhtF2qsLo%3D Occurrence Handle10.2307/1939478

    Article  CAS  Google Scholar 

  • W. H. Patrick R. A. Khalid (1974) ArticleTitlePhosphate release and sorption by soils and sediments: effect of aerobic and anaerobic conditions Science 186 53–55 Occurrence Handle1:CAS:528:DyaE2cXlsFSqur4%3D Occurrence Handle17818101

    CAS  PubMed  Google Scholar 

  • N. Pauliukonis R. Schneider (2001) ArticleTitleTemporal patterns in evapotranspiration from lysimeters with three common wetland plant species in the eastern United States Aquatic Botany 71 35–46 Occurrence Handle10.1016/S0304-3770(01)00168-1

    Article  Google Scholar 

  • P. S. Porter C. A. Sanchez (1992) ArticleTitleThe effect of soil properties on phosphorus adsorption by Everglades histosols Soil Science 154 387–398 Occurrence Handle1:CAS:528:DyaK3sXlvVOgtQ%3D%3D

    CAS  Google Scholar 

  • J. D. Rhoades 1996. Salinity: electrical conductivity and total dissolved solids. In Sparks D.L. (ed.), Methods of Soil Analysis Soil Science Society of America Book Series. (5th edn): 417-436.

  • C. J. Richardson P. Vaithiyanathan (1995) ArticleTitlePhosphorus sorption characteristics of Everglades soils along a eutrophication gradient Soil Science Society of America Journal 59 1782–1788 Occurrence Handle1:CAS:528:DyaK2MXpvVSqsL8%3D Occurrence Handle10.2136/sssaj1995.03615995005900060040x

    Article  CAS  Google Scholar 

  • M. Rietkerk S. C. Dekker M. J. Wassen A. W. M. Verkroost M. F. P. Bierkens (2004) ArticleTitleA putative mechanism for bog patterning American Naturalist 163 699–708 Occurrence Handle15122488 Occurrence Handle1:STN:280:DC%2BD2c3itFylsQ%3D%3D Occurrence Handle10.1086/383065

    Article  PubMed  CAS  Google Scholar 

  • M. S. Ross D. L. Reed J. P. Sah P. L. Ruiz M. T. Lewin (2003) ArticleTitleVegetation: environment relationships and water management in Shark Slough, Everglades National Park Wetlands Ecology and Management 11 291–303 Occurrence Handle10.1023/B:WETL.0000005541.30283.11

    Article  Google Scholar 

  • M. S. Ross D. T. Jones G. L. Chmura H. C. Cooley H. Hwang K. Jayachandran S. F. Oberbauer D. L. Reed P. L. Ruiz J. P. Sah S. Sah D. Stockman P. A. Stone J. Walters (2004) Tree Islands in the Shark Slough Landscape: Interactions of Vegetation, Hydrology and Soils Final Report. Submitted to the Everglades National Park Homestead, Florida, USA

    Google Scholar 

  • P. L. Ruiz M. S. Ross (2004) Vegetation mapping and landscape pattern in Shark Slough M. S. Ross D. T. Jones G. L. Chmura H. C. Cooley H. Hwang K. Jayachandran S. F. Oberbauer D. L. Reed P. L. Ruiz J. P. Sah S. Sah D. Stockman P. A. Stone J. Walters (Eds) Tree Islands in the Shark Slough Landscape: Interactions of Vegetation, Hydrology and Soils Final Report. Submitted to the Everglades National Park Homestead, Florida, USA 17–28

    Google Scholar 

  • J. Schellekens F. N. Scatena L. A. Bruijenzeel A. J. Wickel (1999) ArticleTitleModeling rainfall interception by a lowland tropical rain forest in northeastern Puerto Rico Journal of Hydrology 225 168–184 Occurrence Handle10.1016/S0022-1694(99)00157-2

    Article  Google Scholar 

  • SCT (Science Coordination Team), 2003. The role of flow in the Everglades ridge and slough landscape, South Florida Ecosystem Restoration Working Group, 62 pp.

  • F. T. Short J. Montgomery C. F. Zimmerman C. A. Short (1993) ArticleTitleProduction and nutrient dynamics of a Syringodium filiforme Kutz. Seagrass bed in Indian River Lagoon, Florida Estuaries 16 323–334 Occurrence Handle1:CAS:528:DyaK2cXosFykug%3D%3D Occurrence Handle10.2307/1352505

    Article  CAS  Google Scholar 

  • L. Solorzano J. H. Sharp (1980) ArticleTitleDetermination of total dissolved phosphorus and particulate phosphorus in natural waters Limnology and Oceanography 25 754–758 Occurrence Handle1:CAS:528:DyaL3MXnsFSg Occurrence Handle10.4319/lo.1980.25.4.0754

    Article  CAS  Google Scholar 

  • Statsoft, Inc., 2004. STATISTICA for windows, version 6.1, Statsoft, Inc. Tulsa, Oklahoma, USA.

  • K. K. Steward W. H. Ornes (1975) ArticleTitleThe autecology of sawgrass in the Florida Everglades Ecology 56 162–171 Occurrence Handle1:CAS:528:DyaE2MXhsFCns7Y%3D Occurrence Handle10.2307/1935308

    Article  CAS  Google Scholar 

  • Stone, P. A., G. L. Chmura, M. S. Ross, P. L. Ruiz, 2005. Sediment and pollen stratiography in Bayhead forest of two large elongated tree islands, southern Everglades. Society of Wetland Scientists 26th Annual Meeting, June 5–10, 2005. Charleston, South Carolina, USA. Abstract.

  • Stothoff, S. & S. Mitchell-Bruker, 2003. Everglades Modeling. EOS Transactions. AGU, 84 (46), Fall Meeting Supplements, Abstract # NG31A-0602, San Francisco, California, Dec. 2003.

  • D. K. Swanson D. F. Grigal (1988) ArticleTitleA simulation model of mire patterning Oikos 53 309–314

    Google Scholar 

  • S. R. Troelstra L. A. P. Lotz R. Wagenaar L. Sluimer (1990) ArticleTitleTemporal and spatial variability in soil nutrient status of a former beach plain Plant and Soil 127 1–12 Occurrence Handle1:CAS:528:DyaK3MXltler Occurrence Handle10.1007/BF00014424

    Article  CAS  Google Scholar 

  • USGS (United States Geological Survey), 2000. South Florida Information Access Data Exchange. http://sofia.usgs.gov/exchange/german/germanet.html.

  • M. Oorschott Particlevan E. Robbemont M. Boerstal I. Strien Particlevan M. Kerkoven-Schmitz Particlevan (1997) ArticleTitleEffects of enhanced nutrient availability on plant and soil nutrient dynamics in two English riverine ecosystems Journal of Ecology 85 167–179 Occurrence Handle10.2307/2960649

    Article  Google Scholar 

  • M. Zhou Y. Li (2001) ArticleTitlePhosphorus-sorption characteristics of calcareous soils and limestone from the southern Everglades and adjacent farmlands Soil Science Society of America Journal 65 1404–1412 Occurrence Handle1:CAS:528:DC%2BD38XptlSm Occurrence Handle10.2136/sssaj2001.6551404x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Ross.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, M.S., Mitchell-Bruker, S., Sah, J.P. et al. Interaction of hydrology and nutrient limitation in the Ridge and Slough landscape of the southern Everglades. Hydrobiologia 569, 37–59 (2006). https://doi.org/10.1007/s10750-006-0121-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-0121-4

Keywords

Navigation