Skip to main content

Advertisement

Log in

Stem cells and diabetic cardiomyopathy: from pathology to therapy

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

The worldwide increase trend in the prevalence of diabetes has highlighted the need for increased research efforts into treatment options for both the disease itself and its associated complications. Diabetes has been widely recognized as a major risk factor for cardiovascular diseases, such as coronary heart disease and hypertension. Diabetic cardiomyopathy (DCM) is a main complication of diabetes, contributing to specific forms of heart failure independent from ischemia or hypertension. Without considerably effective approaches, a dire need exists to further explore the mechanisms and potential therapeutic strategies to prevent or reverse the progression of DCM. In the past decades, stem cell-based therapies have held promises to various diseases including DCM. The aim of the present review was to summarize the current literature with regard to the pathological changes of diabetic cardiomyopathy, endogenous stem cells in diabetes, and the exogenous stem cells transplantation for DCM. If the best use is made of the advantages of stem cells and their mechanism of action is explicitly explored, stem cell-based therapies could served as an important tool for the prevention and treatment of DCM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. American Diabetes A (2013) Diagnosis and classification of diabetes mellitus. Diabetes Care 36(Suppl 1):S67–S74. doi:10.2337/dc13-S067

    Article  Google Scholar 

  2. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87(1):4–14. doi:10.1016/j.diabres.2009.10.007

    Article  CAS  PubMed  Google Scholar 

  3. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27(5):1047–1053

    Article  PubMed  Google Scholar 

  4. Tabak AG, Herder C, Rathmann W, Brunner EJ, Kivimaki M (2012) Prediabetes: a high-risk state for diabetes development. Lancet 379(9833):2279–2290. doi:10.1016/S0140-6736(12)60283-9

    Article  PubMed  PubMed Central  Google Scholar 

  5. Aronson D, Rayfield EJ, Chesebro JH (1997) Mechanisms determining course and outcome of diabetic patients who have had acute myocardial infarction. Ann Intern Med 126(4):296–306

    Article  CAS  PubMed  Google Scholar 

  6. Rahman S, Rahman T, Ismail AA, Rashid AR (2007) Diabetes-associated macrovasculopathy: pathophysiology and pathogenesis. Diabetes Obes Metab 9(6):767–780. doi:10.1111/j.1463-1326.2006.00655.x

    Article  CAS  PubMed  Google Scholar 

  7. Mathew V, Gersh BJ, Williams BA, Laskey WK, Willerson JT, Tilbury RT, Davis BR, Holmes DR Jr (2004) Outcomes in patients with diabetes mellitus undergoing percutaneous coronary intervention in the current era: a report from the prevention of restenosis with tranilast and its outcomes (PRESTO) trial. Circulation 109(4):476–480. doi:10.1161/01.CIR.0000109693.64957.20

    Article  PubMed  Google Scholar 

  8. Pignone M, Alberts MJ, Colwell JA, Cushman M, Inzucchi SE, Mukherjee D, Rosenson RS, Williams CD, Wilson PW, Kirkman MS, American Diabetes A, American Heart A, American College of Cardiology F (2010) Aspirin for primary prevention of cardiovascular events in people with diabetes: a position statement of the American Diabetes Association, a scientific statement of the American Heart Association, and an expert consensus document of the American College of Cardiology Foundation. Diabetes Care 33(6):1395–1402. doi:10.2337/dc10-0555

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chavali V, Tyagi SC, Mishra PK (2013) Predictors and prevention of diabetic cardiomyopathy. Diabetes Metab Syndr Obes Targets Ther 6:151–160. doi:10.2147/dmso.s30968

    Google Scholar 

  10. Aurigemma GP, Zile MR, Gaasch WH (2006) Contractile behavior of the left ventricle in diastolic heart failure: with emphasis on regional systolic function. Circulation 113(2):296–304. doi:10.1161/CIRCULATIONAHA.104.481465

    Article  PubMed  Google Scholar 

  11. Schannwell CM, Schneppenheim M, Perings S, Plehn G, Strauer BE (2002) Left ventricular diastolic dysfunction as an early manifestation of diabetic cardiomyopathy. Cardiology 98(1–2):33–39. doi:10.1159/000064682

    Article  CAS  PubMed  Google Scholar 

  12. Diamant M, Lamb HJ, Groeneveld Y, Endert EL, Smit JW, Bax JJ, Romijn JA, de Roos A, Radder JK (2003) Diastolic dysfunction is associated with altered myocardial metabolism in asymptomatic normotensive patients with well-controlled type 2 diabetes mellitus. J Am Coll Cardiol 42(2):328–335

    Article  CAS  PubMed  Google Scholar 

  13. Pham I, Cosson E, Nguyen MT, Banu I, Genevois I, Poignard P, Valensi P (2015) Evidence for a specific diabetic cardiomyopathy: an observational retrospective echocardiographic study in 656 asymptomatic type 2 diabetic patients. Int J Endocrinol 2015:743503. doi:10.1155/2015/743503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Muhammad Z, Hashmi A (2013) Frequency of diabetic cardiomyopathy among type-2 diabetics presenting as heart failure. J Coll Physicians Surg Pak 23(8):538–542

    PubMed  Google Scholar 

  15. Vinereanu D, Nicolaides E, Tweddel AC, Madler CF, Holst B, Boden LE, Cinteza M, Rees AE, Fraser AG (2003) Subclinical left ventricular dysfunction in asymptomatic patients with Type II diabetes mellitus, related to serum lipids and glycated haemoglobin. Clin Sci 105(5):591–599. doi:10.1042/CS20030168

    Article  CAS  PubMed  Google Scholar 

  16. Basu R, Oudit GY, Wang X, Zhang L, Ussher JR, Lopaschuk GD, Kassiri Z (2009) Type 1 diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function. Am J Physiol Heart Circ Physiol 297(6):H2096–H2108. doi:10.1152/ajpheart.00452.2009

    Article  CAS  PubMed  Google Scholar 

  17. Saran V, Sharma V, Wambolt R, Yuen VG, Allard M, McNeill JH (2014) Combined metoprolol and ascorbic acid treatment prevents intrinsic damage to the heart during diabetic cardiomyopathy. Can J Physiol Pharmacol 92(10):827–837. doi:10.1139/cjpp-2014-0078

    Article  CAS  PubMed  Google Scholar 

  18. Yu X, Tesiram YA, Towner RA, Abbott A, Patterson E, Huang S, Garrett MW, Chandrasekaran S, Matsuzaki S, Szweda LI, Gordon BE, Kem DC (2007) Early myocardial dysfunction in streptozotocin-induced diabetic mice: a study using in vivo magnetic resonance imaging (MRI). Cardiovasc Diabetol 6:6. doi:10.1186/1475-2840-6-6

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wichi R, Malfitano C, Rosa K, De Souza SB, Salemi V, Mostarda C, De Angelis K, Irigoyen MC (2007) Noninvasive and invasive evaluation of cardiac dysfunction in experimental diabetes in rodents. Cardiovasc Diabetol 6:14. doi:10.1186/1475-2840-6-14

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wood P, Piran S, Liu PP (2011) Diastolic heart failure: progress, treatment challenges, and prevention. Can J Cardiol 27(3):302–310. doi:10.1016/j.cjca.2011.02.008

    Article  PubMed  Google Scholar 

  21. Galderisi M, Anderson KM, Wilson PW, Levy D (1991) Echocardiographic evidence for the existence of a distinct diabetic cardiomyopathy (the Framingham Heart Study). Am J Cardiol 68(1):85–89

    Article  CAS  PubMed  Google Scholar 

  22. Bernardo BC, Weeks KL, Pretorius L, McMullen JR (2010) Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 128(1):191–227. doi:10.1016/j.pharmthera.2010.04.005

    Article  CAS  PubMed  Google Scholar 

  23. Ritchie RH, Irvine JC, Rosenkranz AC, Patel R, Wendt IR, Horowitz JD, Kemp-Harper BK (2009) Exploiting cGMP-based therapies for the prevention of left ventricular hypertrophy: NO* and beyond. Pharmacol Ther 124(3):279–300. doi:10.1016/j.pharmthera.2009.08.001

    Article  CAS  PubMed  Google Scholar 

  24. van Empel VP, De Windt LJ (2004) Myocyte hypertrophy and apoptosis: a balancing act. Cardiovasc Res 63(3):487–499. doi:10.1016/j.cardiores.2004.02.013

    Article  PubMed  CAS  Google Scholar 

  25. Eguchi K, Boden-Albala B, Jin Z, Rundek T, Sacco RL, Homma S, Di Tullio MR (2008) Association between diabetes mellitus and left ventricular hypertrophy in a multiethnic population. Am J Cardiol 101(12):1787–1791. doi:10.1016/j.amjcard.2008.02.082

    Article  PubMed  PubMed Central  Google Scholar 

  26. Konstandin MH, Toko H, Gastelum GM, Quijada P, De La Torre A, Quintana M, Collins B, Din S, Avitabile D, Volkers M, Gude N, Fassler R, Sussman MA (2013) Fibronectin is essential for reparative cardiac progenitor cell response after myocardial infarction. Circ Res 113(2):115–125. doi:10.1161/circresaha.113.301152

    Article  CAS  PubMed  Google Scholar 

  27. Gaetani R, Yin C, Srikumar N, Braden R, Doevendans PA, Sluijter JP, Christman KL (2015) Cardiac derived extracellular matrix enhances cardiogenic properties of human cardiac progenitor cells. Cell Transplant. doi:10.3727/096368915X689794

    PubMed  Google Scholar 

  28. Zhang J, Klos M, Wilson GF, Herman AM, Lian X, Raval KK, Barron MR, Hou L, Soerens AG, Yu J, Palecek SP, Lyons GE, Thomson JA, Herron TJ, Jalife J, Kamp TJ (2012) Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circ Res 111(9):1125–1136. doi:10.1161/CIRCRESAHA.112.273144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Westermann D, Rutschow S, Jager S, Linderer A, Anker S, Riad A, Unger T, Schultheiss HP, Pauschinger M, Tschope C (2007) Contributions of inflammation and cardiac matrix metalloproteinase activity to cardiac failure in diabetic cardiomyopathy: the role of angiotensin type 1 receptor antagonism. Diabetes 56(3):641–646. doi:10.2337/db06-1163

    Article  CAS  PubMed  Google Scholar 

  30. Van Linthout S, Seeland U, Riad A, Eckhardt O, Hohl M, Dhayat N, Richter U, Fischer JW, Bohm M, Pauschinger M, Schultheiss HP, Tschope C (2008) Reduced MMP-2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 103(4):319–327. doi:10.1007/s00395-008-0715-2

    Article  PubMed  CAS  Google Scholar 

  31. Mizushige K, Yao L, Noma T, Kiyomoto H, Yu Y, Hosomi N, Ohmori K, Matsuo H (2000) Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model. Circulation 101(8):899–907

    Article  CAS  PubMed  Google Scholar 

  32. Way KJ, Isshiki K, Suzuma K, Yokota T, Zvagelsky D, Schoen FJ, Sandusky GE, Pechous PA, Vlahos CJ, Wakasaki H, King GL (2002) Expression of connective tissue growth factor is increased in injured myocardium associated with protein kinase C beta2 activation and diabetes. Diabetes 51(9):2709–2718

    Article  CAS  PubMed  Google Scholar 

  33. D’Souza A, Howarth FC, Yanni J, Dobryznski H, Boyett MR, Adeghate E, Bidasee KR, Singh J (2011) Left ventricle structural remodelling in the prediabetic Goto-Kakizaki rat. Exp Physiol 96(9):875–888. doi:10.1113/expphysiol.2011.058271

    Article  PubMed  Google Scholar 

  34. Begum N, Ragolia L (2000) High glucose and insulin inhibit VSMC MKP-1 expression by blocking iNOS via p38 MAPK activation. Am J Physiol Cell Physiol 278(1):C81–C91

    CAS  PubMed  Google Scholar 

  35. Tokudome T, Horio T, Yoshihara F, Suga S, Kawano Y, Kohno M, Kangawa K (2004) Direct effects of high glucose and insulin on protein synthesis in cultured cardiac myocytes and DNA and collagen synthesis in cardiac fibroblasts. Metab Clin Exp 53(6):710–715

    Article  CAS  PubMed  Google Scholar 

  36. Woodman OL, Malakul W, Cao AH, Xu Q, Ritchie RH (2008) Atrial natriuretic peptide prevents diabetes-induced endothelial dysfunction. Life Sci 82(15–16):847–854. doi:10.1016/j.lfs.2008.01.016

    Article  CAS  PubMed  Google Scholar 

  37. Oltman CL, Richou LL, Davidson EP, Coppey LJ, Lund DD, Yorek MA (2006) Progression of coronary and mesenteric vascular dysfunction in Zucker obese and Zucker diabetic fatty rats. Am J Physiol Heart Circ Physiol 291(4):H1780–H1787. doi:10.1152/ajpheart.01297.2005

    Article  CAS  PubMed  Google Scholar 

  38. Mather KJ, Lteif A, Steinberg HO, Baron AD (2004) Interactions between endothelin and nitric oxide in the regulation of vascular tone in obesity and diabetes. Diabetes 53(8):2060–2066

    Article  CAS  PubMed  Google Scholar 

  39. Farhangkhoee H, Khan ZA, Kaur H, Xin X, Chen S, Chakrabarti S (2006) Vascular endothelial dysfunction in diabetic cardiomyopathy: pathogenesis and potential treatment targets. Pharmacol Ther 111(2):384–399. doi:10.1016/j.pharmthera.2005.10.008

    Article  CAS  PubMed  Google Scholar 

  40. Irvine JC, Ritchie RH, Favaloro JL, Andrews KL, Widdop RE, Kemp-Harper BK (2008) Nitroxyl (HNO): the Cinderella of the nitric oxide story. Trends Pharmacol Sci 29(12):601–608. doi:10.1016/j.tips.2008.08.005

    Article  CAS  PubMed  Google Scholar 

  41. Leo CH, Hart JL, Woodman OL (2011) Impairment of both nitric oxide-mediated and EDHF-type relaxation in small mesenteric arteries from rats with streptozotocin-induced diabetes. Br J Pharmacol 162(2):365–377. doi:10.1111/j.1476-5381.2010.01023.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, Skatchkov M, Thaiss F, Stahl RA, Warnholtz A, Meinertz T, Griendling K, Harrison DG, Forstermann U, Munzel T (2001) Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 88(2):E14–E22

    Article  CAS  PubMed  Google Scholar 

  43. Edgley AJ, Krum H, Kelly DJ (2012) Targeting fibrosis for the treatment of heart failure: a role for transforming growth factor-beta. Cardiovasc Ther 30(1):e30–e40. doi:10.1111/j.1755-5922.2010.00228.x

    Article  CAS  PubMed  Google Scholar 

  44. Chou E, Suzuma I, Way KJ, Opland D, Clermont AC, Naruse K, Suzuma K, Bowling NL, Vlahos CJ, Aiello LP, King GL (2002) Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic States: a possible explanation for impaired collateral formation in cardiac tissue. Circulation 105(3):373–379

    Article  CAS  PubMed  Google Scholar 

  45. Yoon YS, Uchida S, Masuo O, Cejna M, Park JS, Gwon HC, Kirchmair R, Bahlman F, Walter D, Curry C, Hanley A, Isner JM, Losordo DW (2005) Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation 111(16):2073–2085. doi:10.1161/01.cir.0000162472.52990.36

    Article  CAS  PubMed  Google Scholar 

  46. Zhang N, Xie X, Chen H, Chen H, Yu H, Wang JA (2014) Stem cell-based therapies for atherosclerosis: perspectives and ongoing controversies. Stem Cells Dev 23(15):1731–1740. doi:10.1089/scd.2014.0078

    Article  PubMed  Google Scholar 

  47. Kojima H, Kim J, Chan L (2014) Emerging roles of hematopoietic cells in the pathobiology of diabetic complications. Trends Endocrinol Metab 25(4):178–187. doi:10.1016/j.tem.2014.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  PubMed  Google Scholar 

  49. Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 4(4):415–428

    Article  CAS  PubMed  Google Scholar 

  50. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279(5356):1528–1530

    Article  CAS  PubMed  Google Scholar 

  51. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174(3):101–109. doi:10.1159/000071150

    Article  PubMed  Google Scholar 

  52. Tropel P, Platet N, Platel JC, Noel D, Albrieux M, Benabid AL, Berger F (2006) Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells (Dayton, Ohio) 24(12):2868–2876. doi:10.1634/stemcells.2005-0636

    Article  CAS  Google Scholar 

  53. Jin P, Zhang X, Wu Y, Li L, Yin Q, Zheng L, Zhang H, Sun C (2010) Streptozotocin-induced diabetic rat-derived bone marrow mesenchymal stem cells have impaired abilities in proliferation, paracrine, antiapoptosis, and myogenic differentiation. Transpl Proc 42(7):2745–2752. doi:10.1016/j.transproceed.2010.05.145

    Article  CAS  Google Scholar 

  54. Spinetti G, Cordella D, Fortunato O, Sangalli E, Losa S, Gotti A, Carnelli F, Rosa F, Riboldi S, Sessa F, Avolio E, Beltrami AP, Emanueli C, Madeddu P (2013) Global remodeling of the vascular stem cell niche in bone marrow of diabetic patients: implication of the microRNA-155/FOXO3a signaling pathway. Circ Res 112(3):510–522. doi:10.1161/circresaha.112.300598

    Article  CAS  PubMed  Google Scholar 

  55. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967

    Article  CAS  PubMed  Google Scholar 

  56. Fadini GP, Losordo D, Dimmeler S (2012) Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res 110(4):624–637. doi:10.1161/CIRCRESAHA.111.243386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fadini GP, Sartore S, Schiavon M, Albiero M, Baesso I, Cabrelle A, Agostini C, Avogaro A (2006) Diabetes impairs progenitor cell mobilisation after hindlimb ischaemia-reperfusion injury in rats. Diabetologia 49(12):3075–3084. doi:10.1007/s00125-006-0401-6

    Article  CAS  PubMed  Google Scholar 

  58. Loomans CJ, de Koning EJ, Staal FJ, Rookmaaker MB, Verseyden C, de Boer HC, Verhaar MC, Braam B, Rabelink TJ, van Zonneveld AJ (2004) Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes 53(1):195–199

    Article  CAS  PubMed  Google Scholar 

  59. Gallagher KA, Liu ZJ, Xiao M, Chen H, Goldstein LJ, Buerk DG, Nedeau A, Thom SR, Velazquez OC (2007) Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. J Clin Investig 117(5):1249–1259. doi:10.1172/JCI29710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348(7):593–600. doi:10.1056/NEJMoa022287

    Article  PubMed  Google Scholar 

  61. Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, Levine JP, Gurtner GC (2002) Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106(22):2781–2786

    Article  PubMed  Google Scholar 

  62. Sibal L, Aldibbiat A, Agarwal SC, Mitchell G, Oates C, Razvi S, Weaver JU, Shaw JA, Home PD (2009) Circulating endothelial progenitor cells, endothelial function, carotid intima-media thickness and circulating markers of endothelial dysfunction in people with type 1 diabetes without macrovascular disease or microalbuminuria. Diabetologia 52(8):1464–1473. doi:10.1007/s00125-009-1401-0

    Article  CAS  PubMed  Google Scholar 

  63. Egan CG, Lavery R, Caporali F, Fondelli C, Laghi-Pasini F, Dotta F, Sorrentino V (2008) Generalised reduction of putative endothelial progenitors and CXCR4-positive peripheral blood cells in type 2 diabetes. Diabetologia 51(7):1296–1305. doi:10.1007/s00125-008-0939-6

    Article  CAS  PubMed  Google Scholar 

  64. Fadini GP, Miorin M, Facco M, Bonamico S, Baesso I, Grego F, Menegolo M, de Kreutzenberg SV, Tiengo A, Agostini C, Avogaro A (2005) Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol 45(9):1449–1457. doi:10.1016/j.jacc.2004.11.067

    Article  CAS  PubMed  Google Scholar 

  65. Hamed S, Brenner B, Abassi Z, Aharon A, Daoud D, Roguin A (2010) Hyperglycemia and oxidized-LDL exert a deleterious effect on endothelial progenitor cell migration in type 2 diabetes mellitus. Thromb Res 126(3):166–174. doi:10.1016/j.thromres.2010.03.002

    Article  CAS  PubMed  Google Scholar 

  66. Fadini GP, Albiero M, Vigili de Kreutzenberg S, Boscaro E, Cappellari R, Marescotti M, Poncina N, Agostini C, Avogaro A (2013) Diabetes impairs stem cell and proangiogenic cell mobilization in humans. Diabetes Care 36(4):943–949. doi:10.2337/dc12-1084

    Article  PubMed  PubMed Central  Google Scholar 

  67. She T, Wang X, Gan Y, Kuang D, Yue J, Ni J, Zhao X, Wang G (2012) Hyperglycemia suppresses cardiac stem cell homing to peri-infarcted myocardium via regulation of ERK1/2 and p38 MAPK activities. Int J Mol Med 30(6):1313–1320. doi:10.3892/ijmm.2012.1125

    CAS  PubMed  Google Scholar 

  68. Rota M, LeCapitaine N, Hosoda T, Boni A, De Angelis A, Padin-Iruegas ME, Esposito G, Vitale S, Urbanek K, Casarsa C, Giorgio M, Luscher TF, Pelicci PG, Anversa P, Leri A, Kajstura J (2006) Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene. Circ Res 99(1):42–52. doi:10.1161/01.res.0000231289.63468.08

    Article  CAS  PubMed  Google Scholar 

  69. Cramer C, Freisinger E, Jones RK, Slakey DP, Dupin CL, Newsome ER, Alt EU, Izadpanah R (2010) Persistent high glucose concentrations alter the regenerative potential of mesenchymal stem cells. Stem Cells Dev 19(12):1875–1884. doi:10.1089/scd.2010.0009

    Article  CAS  PubMed  Google Scholar 

  70. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822. doi:10.1182/blood-2004-04-1559

    Article  CAS  PubMed  Google Scholar 

  71. Fiorina P, Jurewicz M, Augello A, Vergani A, Dada S, La Rosa S, Selig M, Godwin J, Law K, Placidi C, Smith RN, Capella C, Rodig S, Adra CN, Atkinson M, Sayegh MH, Abdi R (2009) Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J Immunol 183(2):993–1004. doi:10.4049/jimmunol.0900803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Williams AR, Hare JM (2011) Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res 109(8):923–940. doi:10.1161/CIRCRESAHA.111.243147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang N, Li J, Luo R, Jiang J, Wang JA (2008) Bone marrow mesenchymal stem cells induce angiogenesis and attenuate the remodeling of diabetic cardiomyopathy. Experimental and clinical endocrinology & diabetes: official journal. Ger Soc Endocrinol Ger Diabetes Assoc 116(2):104–111. doi:10.1055/s-2007-985154

    CAS  Google Scholar 

  74. Li JH, Zhang N, Wang JA (2008) Improved anti-apoptotic and anti-remodeling potency of bone marrow mesenchymal stem cells by anoxic pre-conditioning in diabetic cardiomyopathy. J Endocrinol Invest 31(2):103–110. doi:10.1007/bf03345575

    Article  CAS  PubMed  Google Scholar 

  75. Khan M, Ali F, Mohsin S, Akhtar S, Mehmood A, Choudhery MS, Khan SN, Riazuddin S (2013) Preconditioning diabetic mesenchymal stem cells with myogenic medium increases their ability to repair diabetic heart. Stem Cell Res Ther 4(3):58. doi:10.1186/scrt207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Khan M, Akhtar S, Mohsin S, N Khan S, Riazuddin S (2011) Growth factor preconditioning increases the function of diabetes-impaired mesenchymal stem cells. Stem Cells Dev 20(1):67–75. doi:10.1089/scd.2009.0397

    Article  CAS  PubMed  Google Scholar 

  77. Calligaris SD, Conget P (2013) Intravenous administration of bone marrow-derived multipotent mesenchymal stromal cells has a neutral effect on obesity-induced diabetic cardiomyopathy. Biol Res 46(3):251–255. doi:10.4067/s0716-97602013000300005

    Article  PubMed  Google Scholar 

  78. Volarevic V, Arsenijevic N, Lukic ML, Stojkovic M (2011) Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells (Dayton, Ohio) 29(1):5–10. doi:10.1002/stem.556

    Article  CAS  Google Scholar 

  79. Shabbir A, Zisa D, Suzuki G, Lee T (2009) Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen. Am J Physiol Heart Circ Physiol 296(6):H1888–H1897. doi:10.1152/ajpheart.00186.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cashman TJ, Gouon-Evans V, Costa KD (2013) Mesenchymal stem cells for cardiac therapy: practical challenges and potential mechanisms. Stem Cell Rev 9(3):254–265. doi:10.1007/s12015-012-9375-6

    Article  CAS  PubMed  Google Scholar 

  81. Wang X, Zhao T, Huang W, Wang T, Qian J, Xu M, Kranias EG, Wang Y, Fan GC (2009) Hsp20-engineered mesenchymal stem cells are resistant to oxidative stress via enhanced activation of Akt and increased secretion of growth factors. Stem Cells (Dayton, Ohio) 27(12):3021–3031. doi:10.1002/stem.230

    CAS  Google Scholar 

  82. Urbich C, Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95(4):343–353. doi:10.1161/01.RES.0000137877.89448.78

    Article  CAS  PubMed  Google Scholar 

  83. Asahara T, Kawamoto A, Masuda H (2011) Concise review: circulating endothelial progenitor cells for vascular medicine. Stem Cells 29(11):1650–1655. doi:10.1002/stem.745

    Article  CAS  PubMed  Google Scholar 

  84. Jarajapu YP, Grant MB (2010) The promise of cell-based therapies for diabetic complications: challenges and solutions. Circ Res 106(5):854–869. doi:10.1161/CIRCRESAHA.109.213140

    Article  CAS  PubMed  Google Scholar 

  85. Cheng Y, Guo S, Liu G, Feng Y, Yan B, Yu J, Feng K, Li Z (2012) Transplantation of bone marrow-derived endothelial progenitor cells attenuates myocardial interstitial fibrosis and cardiac dysfunction in streptozotocin-induced diabetic rats. Int J Mol Med 30(4):870–876. doi:10.3892/ijmm.2012.1083

    CAS  PubMed  Google Scholar 

  86. Delucchi F, Berni R, Frati C, Cavalli S, Graiani G, Sala R, Chaponnier C, Gabbiani G, Calani L, Del Rio D, Bocchi L, Lagrasta C, Quaini F, Stilli D (2012) Resveratrol treatment reduces cardiac progenitor cell dysfunction and prevents morpho-functional ventricular remodeling in type-1 diabetic rats. PLoS ONE 7(6):e39836. doi:10.1371/journal.pone.0039836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  88. Pfannkuche K, Liang H, Hannes T, Xi J, Fatima A, Nguemo F, Matzkies M, Wernig M, Jaenisch R, Pillekamp F, Halbach M, Schunkert H, Saric T, Hescheler J, Reppel M (2009) Cardiac myocytes derived from murine reprogrammed fibroblasts: intact hormonal regulation, cardiac ion channel expression and development of contractility. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 24(1–2):73–86. doi:10.1159/000227815

    Article  CAS  Google Scholar 

  89. Yan B, Singla DK (2013) Transplanted induced pluripotent stem cells mitigate oxidative stress and improve cardiac function through the Akt cell survival pathway in diabetic cardiomyopathy. Mol Pharm 10(9):3425–3432. doi:10.1021/mp400258d

    Article  CAS  PubMed  Google Scholar 

  90. Neel S, Singla DK (2011) Induced pluripotent stem (iPS) cells inhibit apoptosis and fibrosis in streptozotocin-induced diabetic rats. Mol Pharm 8(6):2350–2357. doi:10.1021/mp2004675

    Article  CAS  PubMed  Google Scholar 

  91. Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136(5):964–977. doi:10.1016/j.cell.2009.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458(7239):771–775. doi:10.1038/nature07864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Riggs JW, Barrilleaux BL, Varlakhanova N, Bush KM, Chan V, Knoepfler PS (2013) Induced pluripotency and oncogenic transformation are related processes. Stem Cells Dev 22(1):37–50. doi:10.1089/scd.2012.0375

    Article  CAS  PubMed  Google Scholar 

  94. Ma T, Xie M, Laurent T, Ding S (2013) Progress in the reprogramming of somatic cells. Circ Res 112(3):562–574. doi:10.1161/CIRCRESAHA.111.249235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Stroedter D, Schmidt T, Bretzel RG, Federlin K (1995) Glucose metabolism and left ventricular dysfunction are normalized by insulin and islet transplantation in mild diabetes in the rat. Acta Diabetol 32(4):235–243

    Article  CAS  PubMed  Google Scholar 

  96. Laviola L, Belsanti G, Davalli AM, Napoli R, Perrini S, Weir GC, Giorgino R, Giorgino F (2001) Effects of streptozocin diabetes and diabetes treatment by islet transplantation on in vivo insulin signaling in rat heart. Diabetes 50(12):2709–2720

    Article  CAS  PubMed  Google Scholar 

  97. Sanada F, Kim J, Czarna A, Chan NYK, Signore S, Ogorek B, Isobe K, Wybieralska E, Borghetti G, Pesapane A, Sorrentino A, Mangano E, Cappetta D, Mangiaracina C, Ricciardi M, Cimini M, Ifedigbo E, Perrella MA, Goichberg P, Choi AM, Kajstura J, Hosoda T, Rota M, Anversa P, Leri A (2014) c-Kit-positive cardiac stem cells nested in hypoxic niches are activated by stem cell factor reversing the aging myopathy. Circ Res 114(1):41–55. doi:10.1161/Circresaha.114.302500

    Article  CAS  PubMed  Google Scholar 

  98. Li Q, Li B, Wang X, Leri A, Jana KP, Liu Y, Kajstura J, Baserga R, Anversa P (1997) Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. J Clin Investig 100(8):1991–1999. doi:10.1172/JCI119730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410(6829):701–705. doi:10.1038/35070587

    Article  CAS  PubMed  Google Scholar 

  100. Li B, Li Q, Wang X, Jana KP, Redaelli G, Kajstura J, Anversa P (1997) Coronary constriction impairs cardiac function and induces myocardial damage and ventricular remodeling in mice. Am J Physiol 273(5 Pt 2):H2508–H2519

    CAS  PubMed  Google Scholar 

  101. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105(1):93–98. doi:10.1161/hc0102.101442

    Article  PubMed  Google Scholar 

  102. Duan HF, Wu CT, Wu DL, Lu Y, Liu HJ, Ha XQ, Zhang QW, Wang H, Jia XX, Wang LS (2003) Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor. Mol Ther 8(3):467–474. doi:10.1016/S1525-0016(03)00186-2

    Article  CAS  PubMed  Google Scholar 

  103. Bonaros N, Rauf R, Wolf D, Margreiter E, Tzankov A, Schlechta B, Kocher A, Ott H, Schachner T, Hering S, Bonatti J, Laufer G (2006) Combined transplantation of skeletal myoblasts and angiopoietic progenitor cells reduces infarct size and apoptosis and improves cardiac function in chronic ischemic heart failure. J Thorac Cardiovasc Surg 132(6):1321–1328. doi:10.1016/j.jtcvs.2006.07.023

    Article  PubMed  Google Scholar 

  104. Memon IA, Sawa Y, Miyagawa S, Taketani S, Matsuda H (2005) Combined autologous cellular cardiomyoplasty with skeletal myoblasts and bone marrow cells in canine hearts for ischemic cardiomyopathy. J Thorac Cardiovasc Surg 130(3):646–653. doi:10.1016/j.jtcvs.2005.02.024

    Article  PubMed  Google Scholar 

  105. Williams AR, Hatzistergos KE, Addicott B, McCall F, Carvalho D, Suncion V, Morales AR, Da Silva J, Sussman MA, Heldman AW, Hare JM (2013) Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation 127(2):213–223. doi:10.1161/circulationaha.112.131110

    Article  PubMed  Google Scholar 

  106. Kishore R, Verma SK, Mackie AR, Vaughan EE, Abramova TV, Aiko I, Krishnamurthy P (2013) Bone marrow progenitor cell therapy-mediated paracrine regulation of cardiac miRNA-155 modulates fibrotic response in diabetic hearts. PLoS ONE 8(4):e60161. doi:10.1371/journal.pone.0060161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang Y, Xue M, Xuan YL, Hu HS, Cheng WJ, Suo F, Li XR, Yan SH, Wang LX (2013) Mesenchymal stem cell therapy improves diabetic cardiac autonomic neuropathy and decreases the inducibility of ventricular arrhythmias. Heart Lung Circ 22(12):1018–1025. doi:10.1016/j.hlc.2013.06.007

    Article  PubMed  Google Scholar 

  108. Li L, Xia YF (2014) Study of adipose tissue-derived mesenchymal stem cells transplantation for rats with dilated cardiomyopathy. Ann Thorac Cardiovasc Surg 20(5):398–406. doi:10.5761/atcs.oa.13-00104

    Article  PubMed  Google Scholar 

  109. Catelain C, Riveron S, Papadopoulos A, Mougenot N, Jacquet A, Vauchez K, Yada E, Puceat M, Fiszman M, Butler-Browne G, Bonne G, Vilquin JT (2013) Myoblasts and embryonic stem cells differentially engraft in a mouse model of genetic dilated cardiomyopathy. Mol Ther J Am Soc Gene Ther 21(5):1064–1075. doi:10.1038/mt.2013.15

    Article  CAS  Google Scholar 

  110. Assmus B, Zeiher AM (2013) Early cardiac retention of administered stem cells determines clinical efficacy of cell therapy in patients with dilated cardiomyopathy. Circ Res 112(1):6–8. doi:10.1161/CIRCRESAHA.112.300341

    Article  CAS  PubMed  Google Scholar 

  111. Vrtovec B, Poglajen G, Lezaic L, Sever M, Domanovic D, Cernelc P, Socan A, Schrepfer S, Torre-Amione G, Haddad F, Wu JC (2013) Effects of intracoronary CD34 + stem cell transplantation in nonischemic dilated cardiomyopathy patients: 5-year follow-up. Circ Res 112(1):165–173. doi:10.1161/CIRCRESAHA.112.276519

    Article  CAS  PubMed  Google Scholar 

  112. Bartunek J, Behfar A, Dolatabadi D, Vanderheyden M, Ostojic M, Dens J, El Nakadi B, Banovic M, Beleslin B, Vrolix M, Legrand V, Vrints C, Vanoverschelde JL, Crespo-Diaz R, Homsy C, Tendera M, Waldman S, Wijns W, Terzic A (2013) Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics. J Am Coll Cardiol 61(23):2329–2338. doi:10.1016/j.jacc.2013.02.071

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Science Foundation of China (Nos. 81570322, 81100141 and 81500334), Natural Science Foundation of Zhejiang Province (No. Y14H020003), Qianjiang Talents Project of Science and Technology Bureau of Zhejiang Province (No. 2013R10032), and Experimental Animal Science Project of Science and Technology Bureau of Zhejiang Province (No. 2015C37109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian’an Wang.

Ethics declarations

Conflict of interest

Drs. Mingfei Liu, Han Chen, Jun Jiang, Zhaocai Zhang, Chen Wang, Na Zhang, Liang Dong, Xinyang Hu, Wei Zhu, Hong Yu, and Jian’an Wang have no conflicts of interest or financial ties to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Chen, H., Jiang, J. et al. Stem cells and diabetic cardiomyopathy: from pathology to therapy. Heart Fail Rev 21, 723–736 (2016). https://doi.org/10.1007/s10741-016-9565-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-016-9565-4

Keywords

Navigation