Skip to main content

Advertisement

Log in

MELAS syndrome and cardiomyopathy: linking mitochondrial function to heart failure pathogenesis

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heart failure remains an important clinical burden, and mitochondrial dysfunction plays a key role in its pathogenesis. The heart has a high metabolic demand, and mitochondrial function is a key determinant of myocardial performance. In mitochondrial disorders, hypertrophic remodeling is the early pattern of cardiomyopathy with progression to dilated cardiomyopathy, conduction defects and ventricular pre-excitation occurring in a significant proportion of patients. Cardiac dysfunction occurs in approximately a third of patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, a stereotypical example of a mitochondrial disorder leading to a cardiomyopathy. We performed unique comparative ultrastructural and gene expression in a MELAS heart compared with non-failing controls. Our results showed a remarkable increase in mitochondrial inclusions and increased abnormal mitochondria in MELAS cardiomyopathy coupled with variable sarcomere thickening, heterogeneous distribution of affected cardiomyocytes and a greater elevation in the expression of disease markers. Investigation and management of patients with mitochondrial cardiomyopathy should follow the well-described contemporary heart failure clinical practice guidelines and include an important role of medical and device therapies. Directed metabolic therapy is lacking, but current research strategies are dedicated toward improving mitochondrial function in patients with mitochondrial disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mori J, Zhang L, Oudit GY, Lopaschuk GD (2013) Impact of the renin-angiotensin system on cardiac energy metabolism in heart failure. J Mol Cell Cardiol 63:98–106

    Article  PubMed  CAS  Google Scholar 

  2. Neubauer S (2007) The failing heart—an engine out of fuel. N Engl J Med 356:1140–1151

    Article  PubMed  Google Scholar 

  3. Bates MG, Bourke JP, Giordano C, d’Amati G, Turnbull DM, Taylor RW (2012) Cardiac involvement in mitochondrial DNA disease: clinical spectrum, diagnosis, and management. Eur Heart J 33:3023–3033

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Williams RS (1995) Cardiac involvement in mitochondrial diseases, and vice versa. Circulation 91:1266–1268

    Article  PubMed  CAS  Google Scholar 

  5. Finsterer J, Kothari S (2014) Cardiac manifestations of primary mitochondrial disorders. Int J Cardiol 177:754–763

    Article  PubMed  Google Scholar 

  6. Wahbi K, Bougouin W, Behin A, Stojkovic T, Becane HM, Jardel C et al (2015) Long-term cardiac prognosis and risk stratification in 260 adults presenting with mitochondrial diseases. Eur Heart J 36:2886–2893

    Article  PubMed  Google Scholar 

  7. Koopman WJ, Willems PH, Smeitink JA (2012) Monogenic mitochondrial disorders. N Engl J Med 366:1132–1141

    Article  PubMed  CAS  Google Scholar 

  8. Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF (2008) Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet 83:254–260

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Gallagher D, Belmonte D, Deurenberg P, Wang Z, Krasnow N, Pi-Sunyer FX et al (1998) Organ-tissue mass measurement allows modeling of REE and metabolically active tissue mass. Am J Physiol 275:E249–E258

    PubMed  CAS  Google Scholar 

  10. Herrmann G, Decherd GM (1939) The chemical nature of heart failure. Ann Intern Med 12:1233–1244

    Article  CAS  Google Scholar 

  11. Marin-Garcia J, Goldenthal MJ (2008) Mitochondrial centrality in heart failure. Heart Fail Rev 13:137–150

    Article  PubMed  Google Scholar 

  12. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  PubMed  CAS  Google Scholar 

  13. Meyers DE, Basha HI, Koenig MK (2013) Mitochondrial cardiomyopathy: pathophysiology, diagnosis, and management. Tex Heart Inst J 40:385–394

    PubMed  PubMed Central  Google Scholar 

  14. Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Investig 115:547–555

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Ahuja P, Wanagat J, Wang Z, Wang Y, Liem DA, Ping P et al (2013) Divergent mitochondrial biogenesis responses in human cardiomyopathy. Circulation 127:1957–1967

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Attardi G, Schatz G (1988) Biogenesis of mitochondria. Annu Rev Cell Biol 4:289–333

    Article  PubMed  CAS  Google Scholar 

  17. Uldry M, Yang W, St-Pierre J, Lin J, Seale P, Spiegelman BM (2006) Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab 3:333–341

    Article  PubMed  CAS  Google Scholar 

  18. Ahuja P, Zhao P, Angelis E, Ruan H, Korge P, Olson A et al (2010) Myc controls transcriptional regulation of cardiac metabolism and mitochondrial biogenesis in response to pathological stress in mice. J Clin Investig 120:1494–1505

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Arany Z, Novikov M, Chin S, Ma Y, Rosenzweig A, Spiegelman BM (2006) Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-gamma coactivator 1alpha. Proc Natl Acad Sci USA 103:10086–10091

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Schwer B, Verdin E (2008) Conserved metabolic regulatory functions of sirtuins. Cell Metab 7:104–112

    Article  PubMed  CAS  Google Scholar 

  21. Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404:1–13

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Linzbach AJ (1960) Heart failure from the point of view of quantitative anatomy. Am J Cardiol 5:370–382

    Article  PubMed  CAS  Google Scholar 

  23. Fayssoil A (2009) Heart diseases in mitochondrial encephalomyopathy, lactic acidosis, and stroke syndrome. Congest Heart Fail 15:284–287

    Article  PubMed  CAS  Google Scholar 

  24. Sproule DM, Kaufmann P (2008) Mitochondrial encephalopathy, lactic acidosis, and strokelike episodes: basic concepts, clinical phenotype, and therapeutic management of MELAS syndrome. Ann N Y Acad Sci 1142:133–158

    Article  PubMed  CAS  Google Scholar 

  25. Mancuso M, Orsucci D, Angelini C, Bertini E, Carelli V, Comi GP et al (2014) The m.3243A>G mitochondrial DNA mutation and related phenotypes. A matter of gender? J Neurol 261:504–510

    Article  PubMed  CAS  Google Scholar 

  26. Nesbitt V, Pitceathly RD, Turnbull DM, Taylor RW, Sweeney MG, Mudanohwo EE et al (2013) The UK MRC Mitochondrial Disease Patient Cohort Study: clinical phenotypes associated with the m.3243A>G mutation–implications for diagnosis and management. J Neurol Neurosurg Psychiatry 84:936–938

    Article  PubMed  Google Scholar 

  27. Silvestri G, Bertini E, Servidei S, Rana M, Zachara E, Ricci E et al (1997) Maternally inherited cardiomyopathy: a new phenotype associated with the A to G AT nt.3243 of mitochondrial DNA (MELAS mutation). Muscle Nerve 20:221–225

    Article  PubMed  CAS  Google Scholar 

  28. Stalder N, Yarol N, Tozzi P, Rotman S, Morris M, Fellmann F et al (2012) Mitochondrial A3243G mutation with manifestation of acute dilated cardiomyopathy. Circu Heart Fail 5:e1–e3

    Article  Google Scholar 

  29. Roberts NK, Perloff JK, Kark RA (1979) Cardiac conduction in the Kearns–Sayre syndrome (a neuromuscular disorder associated with progressive external ophthalmoplegia and pigmentary retinopathy). Report of 2 cases and review of 17 published cases. Am J Cardiol 44:1396–1400

    Article  PubMed  CAS  Google Scholar 

  30. Malfatti E, Laforet P, Jardel C, Stojkovic T, Behin A, Eymard B et al (2013) High risk of severe cardiac adverse events in patients with mitochondrial m.3243A>G mutation. Neurology 80:100–105

    Article  PubMed  CAS  Google Scholar 

  31. Okajima Y, Tanabe Y, Takayanagi M, Aotsuka H (1998) A follow up study of myocardial involvement in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). Heart 80:292–295

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Sproule DM, Kaufmann P, Engelstad K, Starc TJ, Hordof AJ, De Vivo DC (2007) Wolff–Parkinson–White syndrome in patients with MELAS. Arch Neurol 64:1625–1627

    Article  PubMed  Google Scholar 

  33. Bogousslavsky J, Perentes E, Deruaz JP, Regli F (1982) Mitochondrial myopathy and cardiomyopathy with neurodegenerative features and multiple brain infarcts. J Neurol Sci 55:351–357

    Article  PubMed  CAS  Google Scholar 

  34. Nishizawa M, Tanaka K, Shinozawa K, Kuwabara T, Atsumi T, Miyatake T et al (1987) A mitochondrial encephalomyopathy with cardiomyopathy. A case revealing a defect of complex I in the respiratory chain. J Neurol Sci 78:189–201

    Article  PubMed  CAS  Google Scholar 

  35. Oldfors A, Tulinius M, Holme E, Kalimo H, Kristiansson B, Eriksson BO (1987) Mitochondrial encephalomyopathy. A variant with heart failure and liver steatosis. Acta Neuropathol 74:287–293

    Article  PubMed  CAS  Google Scholar 

  36. Hamazaki S, Okada S, Kusaka H, Fujii T, Okuno T, Kashu I et al (1989) Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. Report of an autopsy. Acta Pathol Jpn 39:599–606

    PubMed  CAS  Google Scholar 

  37. Fujii T, Okuno T, Ito M, Mutoh K, Horiguchi Y, Tashiro H et al (1991) MELAS of infantile onset: mitochondrial angiopathy or cytopathy? J Neurol Sci 103:37–41

    Article  PubMed  CAS  Google Scholar 

  38. Muller-Hocker J, Hubner G, Bise K, Forster C, Hauck S, Paetzke I et al (1993) Generalized mitochondrial microangiopathy and vascular cytochrome c oxidase deficiency. Occurrence in a case of MELAS syndrome with mitochondrial cardiomyopathy-myopathy and combined complex I/IV deficiency. Arch Pathol Lab Med 117:202–210

    PubMed  CAS  Google Scholar 

  39. Sato W, Tanaka M, Sugiyama S, Nemoto T, Harada K, Miura Y et al (1994) Cardiomyopathy and angiopathy in patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes. Am Heart J 128:733–741

    Article  PubMed  CAS  Google Scholar 

  40. Ishikawa Y, Asuwa N, Ishii T, Masuda S, Kiguchi H, Hirai S et al (1995) Severe mitochondrial cardiomyopathy and extra-neuromuscular abnormalities in mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode (MELAS). Pathol Res Pract 191:64–69 discussion 70–75

    Article  PubMed  CAS  Google Scholar 

  41. Terauchi A, Tamagawa K, Morimatsu Y, Kobayashi M, Sano T, Yoda S (1996) An autopsy case of mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) with a point mutation of mitochondrial DNA. Brain Dev 18:224–229

    Article  PubMed  CAS  Google Scholar 

  42. Chin J, Marotta R, Chiotis M, Allan EH, Collins SJ (2014) Detection rates and phenotypic spectrum of m.3243A>G in the MT-TL1 gene: a molecular diagnostic laboratory perspective. Mitochondrion 17:34–41

    Article  PubMed  CAS  Google Scholar 

  43. Pang CY, Lee HC, Wei YH (2001) Enhanced oxidative damage in human cells harboring A3243G mutation of mitochondrial DNA: implication of oxidative stress in the pathogenesis of mitochondrial diabetes. Diabetes Res Clin Pract 54(Suppl 2):S45–S56

    Article  PubMed  CAS  Google Scholar 

  44. Katayama Y, Maeda K, Iizuka T, Hayashi M, Hashizume Y, Sanada M et al (2009) Accumulation of oxidative stress around the stroke-like lesions of MELAS patients. Mitochondrion 9:306–313

    Article  PubMed  CAS  Google Scholar 

  45. Teodorescu C, Reinier K, Dervan C, Uy-Evanado A, Samara M, Mariani R et al (2010) Factors associated with pulseless electric activity versus ventricular fibrillation: the Oregon sudden unexpected death study. Circulation 122:2116–2122

    Article  PubMed  Google Scholar 

  46. Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV et al (2014) Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Investig 124:617–630

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Lewis W, Dalakas MC (1995) Mitochondrial toxicity of antiviral drugs. Nat Med 1:417–422

    Article  PubMed  CAS  Google Scholar 

  49. Weidemann F, Rummey C, Bijnens B, Stork S, Jasaityte R, Dhooge J et al (2012) The heart in Friedreich ataxia: definition of cardiomyopathy, disease severity, and correlation with neurological symptoms. Circulation 125:1626–1634

    Article  PubMed  Google Scholar 

  50. Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427

    Article  PubMed  CAS  Google Scholar 

  51. Lodi R, Rajagopalan B, Blamire AM, Cooper JM, Davies CH, Bradley JL et al (2001) Cardiac energetics are abnormal in Friedreich ataxia patients in the absence of cardiac dysfunction and hypertrophy: an in vivo 31P magnetic resonance spectroscopy study. Cardiovasc Res 52:111–119

    Article  PubMed  CAS  Google Scholar 

  52. Ricci JE, Gottlieb RA, Green DR (2003) Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. J Cell Biol 160:65–75

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Gunter TE, Buntinas L, Sparagna G, Eliseev R, Gunter K (2000) Mitochondrial calcium transport: mechanisms and functions. Cell Calcium 28:285–296

    Article  PubMed  CAS  Google Scholar 

  54. Brown DT, Herbert M, Lamb VK, Chinnery PF, Taylor RW, Lightowlers RN et al (2006) Transmission of mitochondrial DNA disorders: possibilities for the future. Lancet 368:87–89

    Article  PubMed  CAS  Google Scholar 

  55. Pfeffer G, Majamaa K, Turnbull DM, Thorburn D, Chinnery PF (2012) Treatment for mitochondrial disorders. Cochrane Database Syst Rev 4:CD004426

    PubMed  Google Scholar 

  56. Lagedrost SJ, Sutton MSJ, Cohen MS, Satou GM, Kaufman BD, Perlman SL et al (2011) Idebenone in Friedreich ataxia cardiomyopathy—results from a 6-month phase III study (IONIA). Am Heart J 161(639–45):e1

    PubMed  Google Scholar 

  57. http://www.santhera.com/index.php?docid=212&vid=&lang=&newsdate=201005&newsid=1417424&newslang=en. Santhera’s MICONOS Trial with Catena®/Sovrima® in Friedreich’s Ataxia Misses Primary Endpoint. 2010

  58. Murphy JL, Blakely EL, Schaefer AM, He L, Wyrick P, Haller RG et al (2008) Resistance training in patients with single, large-scale deletions of mitochondrial DNA. Brain J Neurol 131:2832–2840

    Article  Google Scholar 

  59. Taivassalo T, Gardner JL, Taylor RW, Schaefer AM, Newman J, Barron MJ et al (2006) Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain J Neurol 129:3391–3401

    Article  Google Scholar 

  60. Bonnet D, Rustin P, Rotig A, Le Bidois J, Munnich A, Vouhe P et al (2001) Heart transplantation in children with mitochondrial cardiomyopathy. Heart 86:570–573

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Tranchant C, Mousson B, Mohr M, Dumoulin R, Welsch M, Weess C et al (1993) Cardiac transplantation in an incomplete Kearns–Sayre syndrome with mitochondrial DNA deletion. Neuromuscul Disord 3:561–566

    Article  PubMed  CAS  Google Scholar 

  62. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH et al (2013) 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128:1810–1852

    Article  PubMed  Google Scholar 

  63. Nakanishi M, Harada M, Tadamura E, Kotani H, Kawakami R, Kuwahara K et al (2007) Images in cardiovascular medicine. Mitochondrial cardiomyopathy evaluated with cardiac magnetic resonance. Circulation 116:e25–e26

    Article  PubMed  Google Scholar 

  64. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A et al (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341:709–717

    Article  PubMed  CAS  Google Scholar 

  65. Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K, Shi H et al (2011) Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med 364:11–21

    Article  PubMed  CAS  Google Scholar 

  66. Schmauss D, Sodian R, Klopstock T, Deutsch MA, Kaczmarek I, Roemer U et al (2007) Cardiac transplantation in a 14-yr-old patient with mitochondrial encephalomyopathy. Pediatr Transplant 11:560–562

    Article  PubMed  CAS  Google Scholar 

  67. Vardas PE, Auricchio A, Blanc JJ, Daubert JC, Drexler H, Ector H et al (2007) Guidelines for cardiac pacing and cardiac resynchronization therapy: The Task Force for Cardiac Pacing and Cardiac Resynchronization Therapy of the European Society of Cardiology. Developed in collaboration with the European Heart Rhythm Association. Eur Heart J 28:2256–2295

    Article  PubMed  Google Scholar 

  68. Epstein AE, DiMarco JP, Ellenbogen KA, Estes NA 3rd, Freedman RA, Gettes LS et al (2008) ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (writing committee to revise the ACC/AHA/NASPE 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices) developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. J Am Coll Cardiol 51:e1–e62

    Article  PubMed  Google Scholar 

  69. Wahbi K, Larue S, Jardel C, Meune C, Stojkovic T, Ziegler F et al (2010) Cardiac involvement is frequent in patients with the m.8344A>G mutation of mitochondrial DNA. Neurology 74:674–677

    Article  PubMed  CAS  Google Scholar 

  70. Majamaa-Voltti K, Peuhkurinen K, Kortelainen ML, Hassinen IE, Majamaa K (2002) Cardiac abnormalities in patients with mitochondrial DNA mutation 3243A>G. BMC Cardiovasc Disord 2:12

    Article  PubMed  PubMed Central  Google Scholar 

  71. Reddy P, Ocampo A, Suzuki K, Luo J, Bacman SR, Williams SL et al (2015) Selective elimination of mitochondrial mutations in the germline by genome editing. Cell 161:459–469

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Durr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C et al (1996) Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 335:1169–1175

    Article  PubMed  CAS  Google Scholar 

  73. Parkinson MH, Boesch S, Nachbauer W, Mariotti C, Giunti P (2013) Clinical features of Friedreich’s ataxia: classical and atypical phenotypes. J Neurochem 126(Suppl 1):103–117

    Article  PubMed  CAS  Google Scholar 

  74. Koeppen AH (2011) Friedreich’s ataxia: pathology, pathogenesis, and molecular genetics. J Neurol Sci 303:1–12

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Khambatta S, Nguyen DL, Beckman TJ, Wittich CM (2014) Kearns–Sayre syndrome: a case series of 35 adults and children. Int J Gen Med 7:325–332

    PubMed  PubMed Central  Google Scholar 

  76. Young TJ, Shah AK, Lee MH, Hayes DL (2005) Kearns–Sayre syndrome: a case report and review of cardiovascular complications. Pacing Clin Electrophysiol 28:454–457

    Article  PubMed  Google Scholar 

  77. Sanaker PS, Husebye ES, Fondenes O, Bindoff LA (2007) Clinical evolution of Kearns–Sayre syndrome with polyendocrinopathy and respiratory failure. Acta Neurol Scand Suppl 187:64–67

    Article  PubMed  CAS  Google Scholar 

  78. Laloi-Michelin M, Virally M, Jardel C, Meas T, Ingster-Moati I, Lombes A et al (2006) Kearns–Sayre syndrome: an unusual form of mitochondrial diabetes. Diabetes Metab 32:182–186

    Article  PubMed  CAS  Google Scholar 

  79. Finsterer J (2008) Leigh and Leigh-like syndrome in children and adults. Pediatr Neurol 39:223–235

    Article  PubMed  Google Scholar 

  80. Rahman S, Blok RB, Dahl HH, Danks DM, Kirby DM, Chow CW et al (1996) Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol 39:343–351

    Article  PubMed  CAS  Google Scholar 

  81. Riordan-Eva P, Sanders MD, Govan GG, Sweeney MG, Da Costa J, Harding AE (1995) The clinical features of Leber’s hereditary optic neuropathy defined by the presence of a pathogenic mitochondrial DNA mutation. Brain J Neurol 118(Pt 2):319–337

    Article  Google Scholar 

  82. Tonska K, Kodron A, Bartnik E (2010) Genotype-phenotype correlations in Leber hereditary optic neuropathy. Biochim Biophys Acta 1797:1119–1123

    Article  PubMed  CAS  Google Scholar 

  83. Andreu AL, Hanna MG, Reichmann H, Bruno C, Penn AS, Tanji K et al (1999) Exercise intolerance due to mutations in the cytochrome b gene of mitochondrial DNA. N Engl J Med 341:1037–1044

    Article  PubMed  CAS  Google Scholar 

  84. de Lonlay P, Valnot I, Barrientos A, Gorbatyuk M, Tzagoloff A, Taanman JW et al (2001) A mutant mitochondrial respiratory chain assembly protein causes complex III deficiency in patients with tubulopathy, encephalopathy and liver failure. Nat Genet 29:57–60

    Article  PubMed  Google Scholar 

  85. Ciafaloni E, Ricci E, Shanske S, Moraes CT, Silvestri G, Hirano M et al (1992) MELAS: clinical features, biochemistry, and molecular genetics. Ann Neurol 31:391–398

    Article  PubMed  CAS  Google Scholar 

  86. Lorenzoni PJ, Scola RH, Kay CS, Arndt RC, Silvado CE, Werneck LC (2011) MERRF: clinical features, muscle biopsy and molecular genetics in Brazilian patients. Mitochondrion 11:528–532

    Article  PubMed  CAS  Google Scholar 

  87. DiMauro S, Hirano M, Kaufmann P, Tanji K, Sano M, Shungu DC et al (2002) Clinical features and genetics of myoclonic epilepsy with ragged red fibers. Adv Neurol 89:217–229

    PubMed  Google Scholar 

  88. Guillausseau PJ, Massin P, Dubois-LaForgue D, Timsit J, Virally M, Gin H et al (2001) Maternally inherited diabetes and deafness: a multicenter study. Ann Intern Med 134:721–728

    Article  PubMed  CAS  Google Scholar 

  89. Maassen JA, Jahangir Tafrechi RS, Janssen GM, Raap AK, Lemkes HH, t Hart LM (2006) New insights in the molecular pathogenesis of the maternally inherited diabetes and deafness syndrome. Endocrinol Metab Clin N Am 35:385–396 x–xi

    Article  CAS  Google Scholar 

  90. Murphy R, Turnbull DM, Walker M, Hattersley AT (2008) Clinical features, diagnosis and management of maternally inherited diabetes and deafness (MIDD) associated with the 3243A>G mitochondrial point mutation. Diabetic Med J Br Diabetic Assoc 25:383–399

    Article  CAS  Google Scholar 

  91. Rojo A, Campos Y, Sanchez JM, Bonaventura I, Aguilar M, Garcia A et al (2006) NARP-MILS syndrome caused by 8993 T>G mitochondrial DNA mutation: a clinical, genetic and neuropathological study. Acta Neuropathol 111:610–616

    Article  PubMed  CAS  Google Scholar 

  92. Santorelli FM, Tanji K, Shanske S, DiMauro S (1997) Heterogeneous clinical presentation of the mtDNA NARP/T8993G mutation. Neurology 49:270–273

    Article  PubMed  CAS  Google Scholar 

  93. Bohlega S, Tanji K, Santorelli FM, Hirano M, Al-Jishi A, DiMauro S (1996) Multiple mitochondrial DNA deletions associated with autosomal recessive ophthalmoplegia and severe cardiomyopathy. Neurology 46:1329–1334

    Article  PubMed  CAS  Google Scholar 

  94. Filosto M, Mancuso M, Nishigaki Y, Pancrudo J, Harati Y, Gooch C et al (2003) Clinical and genetic heterogeneity in progressive external ophthalmoplegia due to mutations in polymerase gamma. Arch Neurol 60:1279–1284

    Article  PubMed  Google Scholar 

  95. Milone M, Massie R (2010) Polymerase gamma 1 mutations: clinical correlations. The Neurologist 16:84–91

    Article  PubMed  Google Scholar 

  96. Hirano M, Marti R, Ferreiro-Barros C, Vila MR, Tadesse S, Nishigaki Y et al (2001) Defects of intergenomic communication: autosomal disorders that cause multiple deletions and depletion of mitochondrial DNA. Semin Cell Dev Biol 12:417–427

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to the family of the child affected by MELAS, because the donation of the heart for research during a rapid autopsy allowed us to perform this unique study. We are also very grateful to Mr. Richard Vriend for the processing of the samples for ultrastructural investigation. The authors would like to acknowledge the physicians, surgeons, nurses and other healthcare team members that provided such prodigious care to this patient.

Funding sources

Our research was funded by operating grants from Heart and Stroke Foundation (HSF), Canadian Institutes of Health Research (CIHR) and Alberta Innovates-Health Solutions (AIHS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin Y. Oudit.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, YH.R., Yogasundaram, H., Parajuli, N. et al. MELAS syndrome and cardiomyopathy: linking mitochondrial function to heart failure pathogenesis. Heart Fail Rev 21, 103–116 (2016). https://doi.org/10.1007/s10741-015-9524-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-015-9524-5

Keywords

Navigation