Skip to main content

Advertisement

Log in

Classification and diagnosis of pulmonary hypertension

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Pulmonary hypertension has been classified into five major subgroups in order to better understand and apply knowledge from the areas of molecular biology, pathophysiology and clinical science. Accurate classification of the patient not only optimizes diagnostic approach but also confers the best benefit, as therapeutic approaches are applied accurately. Current diagnostic strategies begin with a detailed history and physical, which are directed to elucidate symptoms that may increase the degree of suspicion. Subsequent application of a logical approach to progress through the diagnostic algorithm , with understanding of the complexity of this process, allows for best possible outcomes. Proper diagnosis and classification will eventually increase the potential for appropriate research and progress toward of a possible cure for this fatal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Simonneau G et al (2013) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 62(25 Suppl):D34–D41

    Article  PubMed  Google Scholar 

  2. Le Pavec J et al (2010) Systemic sclerosis-associated pulmonary arterial hypertension. Am J Respir Crit Care Med 181(12):1285–1293

    Article  PubMed  PubMed Central  Google Scholar 

  3. Coghlan JG et al (2014) Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: the DETECT study. Ann Rheum Dis 73(7):1340–1349

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ruiz-Irastorza G et al (2013) Pulmonary hypertension in systemic lupus erythematosus: prevalence, predictors and diagnostic strategy. Autoimmun Rev 12(3):410–415

    Article  PubMed  Google Scholar 

  5. Gunnarsson R et al (2013) Prevalence of pulmonary hypertension in an unselected, mixed connective tissue disease cohort: results of a nationwide, Norwegian cross-sectional multicentre study and review of current literature. Rheumatology (Oxford) 52(7):1208–1213

    Article  CAS  Google Scholar 

  6. Chung L et al (2014) Unique predictors of mortality in patients with pulmonary arterial hypertension associated with systemic sclerosis in the REVEAL registry. Chest 146(6):1494–1504

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sitbon O et al (2008) Prevalence of HIV-related pulmonary arterial hypertension in the current antiretroviral therapy era. Am J Respir Crit Care Med 177(1):108–113

    Article  PubMed  Google Scholar 

  8. Krowka MJ et al (2006) Portopulmonary hypertension: results from a 10-year screening algorithm. Hepatology 44(6):1502–1510

    Article  PubMed  Google Scholar 

  9. Krowka MJ et al (2012) Portopulmonary hypertension: a report from the US-based REVEAL Registry. Chest 141(4):906–915

    Article  PubMed  Google Scholar 

  10. Marelli AJ et al (2014) Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation 130(9):749–756

    Article  PubMed  Google Scholar 

  11. Ferreira RC et al (2009) Prevalence of pulmonary hypertension in patients with schistosomal liver fibrosis. Ann Trop Med Parasitol 103(2):129–143

    Article  CAS  PubMed  Google Scholar 

  12. Lapa M et al (2009) Cardiopulmonary manifestations of hepatosplenic schistosomiasis. Circulation 119(11):1518–1523

    Article  PubMed  Google Scholar 

  13. Goncalves EC, Fonseca AP, Pittella JE (1995) Frequency of schistosomiasis mansoni, of its clinicopathological forms and of the ectopic locations of the parasite in autopsies in Belo Horizonte, Brazil. J Trop Med Hyg 98(5):289–295

    CAS  PubMed  Google Scholar 

  14. Fonseca GH et al (2012) Pulmonary hypertension diagnosed by right heart catheterisation in sickle cell disease. Eur Respir J 39(1):112–118

    Article  CAS  PubMed  Google Scholar 

  15. Parent F et al (2011) A hemodynamic study of pulmonary hypertension in sickle cell disease. N Engl J Med 365(1):44–53

    Article  CAS  PubMed  Google Scholar 

  16. Agarwal R et al (2012) Risk assessment in pulmonary hypertension associated with heart failure and preserved ejection fraction. J Heart Lung Transpl 31(5):467–477

    Article  Google Scholar 

  17. Leung CC et al (2010) Prevalence and risk factors of pulmonary hypertension in patients with elevated pulmonary venous pressure and preserved ejection fraction. Am J Cardiol 106(2):284–286

    Article  PubMed  Google Scholar 

  18. Gerges C et al (2013) Diastolic pulmonary vascular pressure gradient: a predictor of prognosis in “out-of-proportion” pulmonary hypertension. Chest 143(3):758–766

    Article  PubMed  Google Scholar 

  19. Gerges M et al (2015) Pulmonary hypertension in heart failure: epidemiology, right ventricular function and survival. Am J Respir Crit Care Med. doi:10.1164/rccm.201503-0529OC

  20. Vachiéry JL et al (2013) Pulmonary hypertension due to left heart diseases. J Am Coll Cardiol 62(25 SUPPL.):D100–D108

    Article  PubMed  Google Scholar 

  21. Hoeper MM et al (2013) Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol 62(25 Suppl):D42–D50

    Article  PubMed  Google Scholar 

  22. McLaughlin VV et al (2009) ACCF/AHA 2009 expert consensus document on pulmonary hypertension: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: developed in collaboration with the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Associati. Circulation 119(16):2250–2294

    Article  PubMed  Google Scholar 

  23. Galie N et al (2009) Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 30(20):2493–2537

    Article  PubMed  Google Scholar 

  24. Kaul S et al (1984) Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J 107(3):526–531

    Article  CAS  PubMed  Google Scholar 

  25. Ghio S et al (2002) Usefulness and limits of transthoracic echocardiography in the evaluation of patients with primary and chronic thromboembolic pulmonary hypertension. J Am Soc Echocardiogr 15(11):1374–1380

    Article  PubMed  Google Scholar 

  26. Rich JD et al (2011) Inaccuracy of Doppler echocardiographic estimates of pulmonary artery pressures in patients with pulmonary hypertension: implications for clinical practice. Chest 139(5):988–993

    Article  PubMed  Google Scholar 

  27. Janda S et al (2011) Diagnostic accuracy of echocardiography for pulmonary hypertension: a systematic review and meta-analysis. Heart 97(8):612–622

    Article  PubMed  Google Scholar 

  28. Fine NM et al (2013) Outcome prediction by quantitative right ventricular function assessment in 575 subjects evaluated for pulmonary hypertension. Circ Cardiovasc Imaging 6(5):711–721

    Article  PubMed  Google Scholar 

  29. Unlu S et al (2015) Apical traction: a novel visual echocardiographic parameter to predict survival in patients with pulmonary hypertension. Eur Heart J Cardiovasc Imaging. doi:10.1093/ehjci/jev131

  30. Grewal J et al (2010) Three-dimensional echocardiographic assessment of right ventricular volume and function in adult patients with congenital heart disease: comparison with magnetic resonance imaging. J Am Soc Echocardiogr 23(2):127–133

    Article  PubMed  Google Scholar 

  31. Pennell DJ et al (2004) Clinical indications for cardiovascular magnetic resonance (CMR): consensus panel report. Eur Heart J 25(21):1940–1965

    Article  PubMed  Google Scholar 

  32. Shors SM et al (2004) Accurate quantification of right ventricular mass at MR imaging by using cine true fast imaging with steady-state precession: study in dogs. Radiology 230(2):383–388

    Article  PubMed  Google Scholar 

  33. Grothues F et al (2004) Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. Am Heart J 147(2):218–223

    Article  PubMed  Google Scholar 

  34. Vonk Noordegraaf A (2015) Noninvasive imaging in the assessment of the cardiopulmonary vascular unit. Circulation 131(10):899–913

    Article  PubMed  Google Scholar 

  35. Chaouat A et al (2005) Severe pulmonary hypertension and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 172(2):189–194

    Article  PubMed  Google Scholar 

  36. Hamada K et al (2007) Significance of pulmonary arterial pressure and diffusion capacity of the lung as prognosticator in patients with idiopathic pulmonary fibrosis. Chest 131(3):650–656

    Article  PubMed  Google Scholar 

  37. Minai OA et al (2012) Impact of pulmonary hemodynamics on 6-min walk test in idiopathic pulmonary fibrosis. Respir Med 106(11):1613–1621

    Article  PubMed  Google Scholar 

  38. Nathan SD et al (2008) Serial development of pulmonary hypertension in patients with idiopathic pulmonary fibrosis. Respiration 76(3):288–294

    Article  CAS  PubMed  Google Scholar 

  39. Rich S et al (1987) Primary pulmonary hypertension: a national prospective study. Ann Intern Med 107(2):216–223

    Article  CAS  PubMed  Google Scholar 

  40. Burke CM et al (1987) Pulmonary function in advanced pulmonary hypertension. Thorax 42(2):131–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Meyer FJ et al (2002) Peripheral airway obstruction in primary pulmonary hypertension. Thorax 57(6):473–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miyamoto S et al (2000) Clinical correlates and prognostic significance of six-minute walk test in patients with primary pulmonary hypertension: comparison with cardiopulmonary exercise testing. Am J Respir Crit Care Med 161(2 Pt 1):487–492

    Article  CAS  PubMed  Google Scholar 

  43. Humbert M et al (2010) Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era. Circulation 122(2):156–163

    Article  PubMed  Google Scholar 

  44. Benza RL et al (2010) Predicting survival in pulmonary arterial hypertension: insights from the registry to evaluate early and long-term pulmonary arterial hypertension disease management (REVEAL). Circulation 122(2):164–172

    Article  PubMed  Google Scholar 

  45. Sitbon O et al (2002) Long-term intravenous epoprostenol infusion in primary pulmonary hypertension: prognostic factors and survival. J Am Coll Cardiol 40(4):780–788

    Article  CAS  PubMed  Google Scholar 

  46. Savarese G et al (2012) Do changes of 6-minute walk distance predict clinical events in patients with pulmonary arterial hypertension? A meta-analysis of 22 randomized trials. J Am Coll Cardiol 60(13):1192–1201

    Article  PubMed  Google Scholar 

  47. Gabler NB et al (2012) Validation of 6-minute walk distance as a surrogate end point in pulmonary arterial hypertension trials. Circulation 126(3):349–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories (2002) ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 166(1): 111–117

    Article  Google Scholar 

  49. Korkmaz A et al (2012) Long-term outcomes in acute pulmonary thromboembolism: the incidence of chronic thromboembolic pulmonary hypertension and associated risk factors. Clin Appl Thromb Hemost 18(3):281–288

    Article  PubMed  Google Scholar 

  50. Bonderman D et al (2005) Medical conditions increasing the risk of chronic thromboembolic pulmonary hypertension. Thromb Haemost 93(3):512–516

    CAS  PubMed  Google Scholar 

  51. Condliffe R et al (2009) Prognostic and aetiological factors in chronic thromboembolic pulmonary hypertension. Eur Respir J 33(2):332–338

    Article  CAS  PubMed  Google Scholar 

  52. Tunariu N et al (2007) Ventilation–perfusion scintigraphy is more sensitive than multidetector CTPA in detecting chronic thromboembolic pulmonary disease as a treatable cause of pulmonary hypertension. J Nucl Med 48(5):680–684

    Article  PubMed  Google Scholar 

  53. Lisbona R et al (1985) Perfusion lung scanning: differentiation of primary from thromboembolic pulmonary hypertension. AJR Am J Roentgenol 144(1):27–30

    Article  CAS  PubMed  Google Scholar 

  54. Auger WR et al (2012) Evaluation of patients with chronic thromboembolic pulmonary hypertension for pulmonary endarterectomy. Pulm Circ 2(2):155–162

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hoeper MM et al (2006) Complications of right heart catheterization procedures in patients with pulmonary hypertension in experienced centers. J Am Coll Cardiol 48(12):2546–2552

    Article  PubMed  Google Scholar 

  56. Kovacs G et al (2013) Zero reference level for right heart catheterisation. Eur Respir J 42(6):1586–1594

    Article  PubMed  Google Scholar 

  57. LeVarge BL, Pomerantsev E, Channick RN (2014) Reliance on end-expiratory wedge pressure leads to misclassification of pulmonary hypertension. Eur Respir J 44(2):425–434

    Article  PubMed  PubMed Central  Google Scholar 

  58. Halpern SD, Taichman DB (2009) Misclassification of pulmonary hypertension due to reliance on pulmonary capillary wedge pressure rather than left ventricular end-diastolic pressure. Chest 136(1):37–43

    Article  PubMed  Google Scholar 

  59. Hoeper MM et al (1999) Determination of cardiac output by the Fick method, thermodilution, and acetylene rebreathing in pulmonary hypertension. Am J Respir Crit Care Med 160(2):535–541

    Article  CAS  PubMed  Google Scholar 

  60. Montani D et al (2010) Long-term response to calcium-channel blockers in non-idiopathic pulmonary arterial hypertension. Eur Heart J 31(15):1898–1907

    Article  CAS  PubMed  Google Scholar 

Download references

Author's contribution

Dr. Hector Cajigas and Dr. Rana Awdish participated equally in the concept, design, writing and editing on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector R. Cajigas.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cajigas, H.R., Awdish, R. Classification and diagnosis of pulmonary hypertension. Heart Fail Rev 21, 229–237 (2016). https://doi.org/10.1007/s10741-015-9512-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-015-9512-9

Keywords

Navigation