Skip to main content
Log in

Adiponectin: key role and potential target to reverse energy wasting in chronic heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

The concept of skeletal muscle myopathy as a main determinant of exercise intolerance in chronic heart failure (HF) is gaining acceptance. Symptoms that typify HF patients, including shortness of breath and fatigue, are often directly related to the abnormalities of the skeletal muscle in HF. Besides muscular wasting, alterations in skeletal muscle energy metabolism, including insulin resistance, have been implicated in HF. Adiponectin, an adipocytokine with insulin-sensitizing properties, receives increasing interest in HF. Circulating adiponectin levels are elevated in HF patients, but high levels are paradoxically associated with poor outcome. Previous analysis of m. vastus lateralis biopsies in HF patients highlighted a striking functional adiponectin resistance. Together with increased circulating adiponectin levels, adiponectin expression within the skeletal muscle is elevated in HF patients, whereas the expression of the main adiponectin receptor and genes involved in the downstream pathway of lipid and glucose metabolism is downregulated. In addition, the adiponectin-related metabolic disturbances strongly correlate with aerobic capacity (VO2 peak), sub-maximal exercise performance and muscle strength. These observations strengthen our hypothesis that adiponectin and its receptors play a key role in the development and progression of the “heart failure myopathy”. The question whether adiponectin exerts beneficial rather than detrimental effects in HF is still left unanswered. This current research overview will elucidate the emerging role of adiponectin in HF and suggests potential therapeutic targets to tackle energy wasting in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MAGGIC (2012) The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis. Eur Heart J 33:1750–1757

    Article  Google Scholar 

  2. Dickstein K, Cohen-Solal A, Filippatos G et al (2008) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the task force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the heart failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur J Heart Fail 10:933–989

    Article  PubMed  Google Scholar 

  3. Mettauer B, Zoll J, Garnier A et al (2006) Heart failure: a model of cardiac and skeletal muscle energetic failure. Pflugers Arch 452:653–666

    Article  PubMed  CAS  Google Scholar 

  4. Ashrafian H, Frenneaux MP, Opie LH (2007) Metabolic mechanisms in heart failure. Circulation 116:434–448

    Article  PubMed  CAS  Google Scholar 

  5. Doehner W, Rauchhaus M, Godsland IF et al (2002) Insulin resistance in moderate chronic heart failure is related to hyperleptinaemia, but not to norepinephrine or TNF-alpha. Int J Cardiol 83:73–81

    Article  PubMed  Google Scholar 

  6. Anker SD, Volterrani M, Pflaum CD et al (2001) Acquired growth hormone resistance in patients with chronic heart failure: implications for therapy with growth hormone. J Am Coll Cardiol 38:443–452

    Article  PubMed  CAS  Google Scholar 

  7. Niebauer J, Pflaum CD, Clark AL et al (1998) Deficient insulin-like growth factor I in chronic heart failure predicts altered body composition, anabolic deficiency, cytokine and neurohormonal activation. J Am Coll Cardiol 32:393–397

    Article  PubMed  CAS  Google Scholar 

  8. Hambrecht R, Schulze PC, Gielen S et al (2005) Effects of exercise training on insulin-like growth factor-I expression in the skeletal muscle of non-cachectic patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil 12:401–406

    Article  PubMed  Google Scholar 

  9. Conraads VM, Hoymans VY, Vrints CJ (2008) Heart failure and cachexia: insights offered from molecular biology. Frontiers Biosci J virtual libr 13:325–335

    Article  CAS  Google Scholar 

  10. Anker SD, Chua TP, Ponikowski P et al (1997) Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation 96:526–534

    Article  PubMed  CAS  Google Scholar 

  11. Stitt TN, Drujan D, Clarke BA et al (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14:395–403

    Article  PubMed  CAS  Google Scholar 

  12. Sandri M, Sandri C, Gilbert A et al (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–412

    Article  PubMed  CAS  Google Scholar 

  13. Zhou Q, Du J, Hu Z et al (2007) Evidence for adipose-muscle cross talk: opposing regulation of muscle proteolysis by adiponectin and fatty acids. Endocrinology 148:5696–5705

    Article  PubMed  CAS  Google Scholar 

  14. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274

    Article  PubMed  CAS  Google Scholar 

  15. Cross DA, Alessi DR, Cohen P et al (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789

    Article  PubMed  CAS  Google Scholar 

  16. Lenk K, Schuler G, Adams V (2011) Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle 1:9–21

    Article  Google Scholar 

  17. Ventura-Clapier R, Kuznetsov A, Veksler V et al (1998) Functional coupling of creatine kinases in muscles: species and tissue specificity. Mol Cell Biochem 184:231–247

    Article  PubMed  CAS  Google Scholar 

  18. Saks V, Favier R, Guzun R et al (2006) Molecular system bioenergetics: regulation of substrate supply in response to heart energy demands. J Physiol 577:769–777

    Article  PubMed  CAS  Google Scholar 

  19. Ventura-Clapier R, Garnier A, Veksler V (2008) Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc Res 79:208–217

    Article  PubMed  CAS  Google Scholar 

  20. Patten IS, Arany Z (2012) PGC-1 coactivators in the cardiovascular system. Trends Endocrinol Metab 23:90–97

    Article  PubMed  CAS  Google Scholar 

  21. Garnier A, Fortin D, Delomenie C et al (2003) Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. J Physiol 551:491–501

    Article  PubMed  CAS  Google Scholar 

  22. Rowe GC, Jang C, Patten IS et al (2011) PGC1beta regulates angiogenesis in skeletal muscle. Am J Physiol Endocrinol Metab 301:E155–E163

    Article  PubMed  CAS  Google Scholar 

  23. Ventura-Clapier R, Garnier A, Veksler V et al (2010) Bioenergetics of the failing heart. Biochim Biophys Acta 1813:1360–1372

    Article  PubMed  Google Scholar 

  24. Momken I, Lechene P, Koulmann N et al (2005) Impaired voluntary running capacity of creatine kinase-deficient mice. J Physiol 565:951–964

    Article  PubMed  CAS  Google Scholar 

  25. Atherton PJ, Babraj J, Smith K et al (2005) Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J 19:786–788

    PubMed  CAS  Google Scholar 

  26. Vaarmann A, Fortin D, Veksler V et al (2008) Mitochondrial biogenesis in fast skeletal muscle of CK deficient mice. Biochim Biophys Acta 1777:39–47

    Article  PubMed  CAS  Google Scholar 

  27. Garnier A, Fortin D, Zoll J et al (2005) Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. FASEB J 19:43–52

    Article  PubMed  CAS  Google Scholar 

  28. Javadov S, Purdham DM, Zeidan A et al (2006) NHE-1 inhibition improves cardiac mitochondrial function through regulation of mitochondrial biogenesis during postinfarction remodeling. Am J Physiol Heart Circ Physiol 291:H1722–H1730

    Article  PubMed  CAS  Google Scholar 

  29. Zoll J, Steiner R, Meyer K et al (2006) Gene expression in skeletal muscle of coronary artery disease patients after concentric and eccentric endurance training. Eur J Appl Physiol 96:413–422

    Article  PubMed  CAS  Google Scholar 

  30. Kemi OJ, Hoydal MA, Haram PM et al (2007) Exercise training restores aerobic capacity and energy transfer systems in heart failure treated with losartan. Cardiovasc Res 76:91–99

    Article  PubMed  CAS  Google Scholar 

  31. Karamanlidis G, Bautista-Hernandez V, Fynn-Thompson F et al (2011) Impaired mitochondrial biogenesis precedes heart failure in right ventricular hypertrophy in congenital heart disease. Circ Heart Fail 4:707–713

    Article  PubMed  CAS  Google Scholar 

  32. Oka S, Alcendor R, Zhai P et al (2011) PPARalpha-Sirt1 complex mediates cardiac hypertrophy and failure through suppression of the ERR transcriptional pathway. Cell Metab 14:598–611

    Article  PubMed  CAS  Google Scholar 

  33. Sebastiani M, Giordano C, Nediani C et al (2007) Induction of mitochondrial biogenesis is a maladaptive mechanism in mitochondrial cardiomyopathies. J Am Coll Cardiol 50:1362–1369

    Article  PubMed  CAS  Google Scholar 

  34. Watson PA, Reusch JE, McCune SA et al. (2007) Restoration of CREB function is linked to completion and stabilization of adaptive cardiac hypertrophy in response to exercise. Am J Physiol Heart Circ Physiol 293:H246–H259

    Google Scholar 

  35. Sun CK, Chang LT, Sheu JJ et al. (2007) Losartan preserves integrity of cardiac gap junctions and PGC-1 alpha gene expression and prevents cellular apoptosis in remote area of left ventricular myocardium following acute myocardial infarction. Int Heart J 48:533–546

    Google Scholar 

  36. Mettauer B, Zoll J, Sanchez H et al (2001) Oxidative capacity of skeletal muscle in heart failure patients versus sedentary or active control subjects. J Am Coll Cardiol 38:947–954

    Article  PubMed  CAS  Google Scholar 

  37. Garnier A, Zoll J, Fortin D et al (2009) Control by circulating factors of mitochondrial function and transcription cascade in heart failure: a role for endothelin-1 and angiotensin II. Circ Heart Fail 2:342–350

    Article  PubMed  CAS  Google Scholar 

  38. Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93:884S–890S

    Article  PubMed  CAS  Google Scholar 

  39. Jager S, Handschin C, St-Pierre J et al (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA 104:12017–12022

    Article  PubMed  Google Scholar 

  40. Lagouge M, Argmann C, Gerhart-Hines Z et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122

    Article  PubMed  CAS  Google Scholar 

  41. Yoon MJ, Lee GY, Chung JJ et al (2006) Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha. Diabetes 55:2562–2570

    Article  PubMed  CAS  Google Scholar 

  42. Civitarese AE, Ukropcova B, Carling S et al (2006) Role of adiponectin in human skeletal muscle bioenergetics. Cell Metab 4:75–87

    Article  PubMed  CAS  Google Scholar 

  43. Iwabu M, Yamauchi T, Okada-Iwabu M et al (2010) Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature 464:1313–1319

    Article  PubMed  CAS  Google Scholar 

  44. Li L, Pan R, Li R et al (2011) Mitochondrial biogenesis and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) deacetylation by physical activity: intact adipocytokine signaling is required. Diabetes 60:157–167

    Article  PubMed  CAS  Google Scholar 

  45. Shinmura K, Tamaki K, Saito K et al (2007) Cardioprotective effects of short-term caloric restriction are mediated by adiponectin via activation of AMP-activated protein kinase. Circulation 116:2809–2817

    Article  PubMed  CAS  Google Scholar 

  46. Dolinsky VW, Morton JS, Oka T et al (2010) Calorie restriction prevents hypertension and cardiac hypertrophy in the spontaneously hypertensive rat. Hypertension 56:412–421

    Article  PubMed  CAS  Google Scholar 

  47. Kondo M, Shibata R, Miura R et al (2009) Caloric restriction stimulates revascularization in response to ischemia via adiponectin-mediated activation of endothelial nitric-oxide synthase. J Biol Chem 284:1718–1724

    Article  PubMed  CAS  Google Scholar 

  48. Opie LH (2004) The metabolic vicious cycle in heart failure. Lancet 364:1733–1734

    Article  PubMed  Google Scholar 

  49. Doehner W, Rauchhaus M, Ponikowski P et al (2005) Impaired insulin sensitivity as an independent risk factor for mortality in patients with stable chronic heart failure. J Am Coll Cardiol 46:1019–1026

    Article  PubMed  CAS  Google Scholar 

  50. ALZadjali MA, Godfrey V, Khan F et al (2009) Insulin resistance is highly prevalent and is associated with reduced exercise intolerance in nondiabetic patients with heart failure. J Am Coll Cardiol 53:747–753

    Article  PubMed  CAS  Google Scholar 

  51. Strassburg S, Springer J, Anker SD (2005) Muscle wasting in cardiac cachexia. Int J Biochem Cell Biol 37:1938–1947

    Article  PubMed  CAS  Google Scholar 

  52. Hambrecht R, Schulze PC, Gielen S et al (2002) Reduction of insulin-like growth factor-I expression in the skeletal muscle of noncachectic patients with chronic heart failure. J Am Coll Cardiol 39:1175–1181

    Article  PubMed  CAS  Google Scholar 

  53. Toth MJ, LeWinter MM, Ades PA et al (2010) Impaired muscle protein anabolic response to insulin and amino acids in heart failure patients: relationship with markers of immune activation. Clin Sci (Lond) 119:467–476

    Article  CAS  Google Scholar 

  54. Tenenbaum A, Fisman EZ (2004) Impaired glucose metabolism in patients with heart failure: pathophysiology and possible treatment strategies. Am J Cardiovasc Drugs 4:269–280

    Article  PubMed  CAS  Google Scholar 

  55. Karbowska J, Kochan Z (2006) Role of adiponectin in the regulation of carbohydrate and lipid metabolism. J Physiol Pharmacol 57:103–113

    PubMed  Google Scholar 

  56. Kadowaki T, Yamauchi T (2005) Adiponectin and adiponectin receptors. Endocr Rev 26:439–451

    Article  PubMed  CAS  Google Scholar 

  57. Yamauchi T, Kamon J, Minokoshi Y et al (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288–1295

    Article  PubMed  CAS  Google Scholar 

  58. Van Berendoncks AM, Conraads VM (2011) Functional adiponectin resistance and exercise intolerance in heart failure. Curr Heart Fail Rep 8:113–122

    Article  PubMed  Google Scholar 

  59. Bluher M, Bullen JW Jr, Lee JH et al (2006) Circulating adiponectin and expression of adiponectin receptors in human skeletal muscle: associations with metabolic parameters and insulin resistance and regulation by physical training. J Clin Endocrinol Metab 91:2310–2316

    Article  PubMed  Google Scholar 

  60. Hotta K, Funahashi T, Arita Y et al (2000) Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 20:1595–1599

    Article  PubMed  CAS  Google Scholar 

  61. Kistorp C, Faber J, Galatius S et al (2005) Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure. Circulation 112:1756–1762

    Article  PubMed  CAS  Google Scholar 

  62. Tsutamoto T, Tanaka T, Sakai H et al (2007) Total and high molecular weight adiponectin, haemodynamics, and mortality in patients with chronic heart failure. Eur Heart J 28:1723–1730

    Article  PubMed  Google Scholar 

  63. George J, Patal S, Wexler D et al (2006) Circulating adiponectin concentrations in patients with congestive heart failure. Heart 92:1420–1424

    Article  PubMed  CAS  Google Scholar 

  64. Tamura T, Furukawa Y, Taniguchi R et al (2007) Serum adiponectin level as an independent predictor of mortality in patients with congestive heart failure. Circ J 71:623–630

    Article  PubMed  CAS  Google Scholar 

  65. Chokshi A, Drosatos K, Cheema FH et al (2012) Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure. Circulation 125:2844–2853

    Article  PubMed  CAS  Google Scholar 

  66. Rame JE (2012) Chronic heart failure: a reversible metabolic syndrome? Circulation 125:2809–2811

    Article  PubMed  Google Scholar 

  67. Hajer GR, van Haeften TW, Visseren FL (2008) Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 29:2959–2971

    Article  PubMed  CAS  Google Scholar 

  68. Chen MB, McAinch AJ, Macaulay SL et al (2005) Impaired activation of AMP-kinase and fatty acid oxidation by globular adiponectin in cultured human skeletal muscle of obese type 2 diabetics. J Clin Endocrinol Metab 90:3665–3672

    Article  PubMed  CAS  Google Scholar 

  69. Bruce CR, Mertz VA, Heigenhauser GJ et al (2005) The stimulatory effect of globular adiponectin on insulin-stimulated glucose uptake and fatty acid oxidation is impaired in skeletal muscle from obese subjects. Diabetes 54:3154–3160

    Article  PubMed  CAS  Google Scholar 

  70. Mullen KL, Pritchard J, Ritchie I et al (2009) Adiponectin resistance precedes the accumulation of skeletal muscle lipids and insulin resistance in high-fat-fed rats. Am J Physiol Regul Integr Comp Physiol 296:R243–R251

    Article  PubMed  CAS  Google Scholar 

  71. Khan RS, Kato TS, Chokshi A et al (2012) Adipose tissue inflammation and adiponectin resistance in patients with advanced heart failure: correction after ventricular assist device implantation. Circ Heart Fail 5:340–348

    Article  PubMed  CAS  Google Scholar 

  72. Van Berendoncks AM, Beckers P, Hoymans VY et al (2010) Exercise training reduces circulating adiponectin levels in patients with chronic heart failure. Clin Sci (Lond) 118:281–289

    Article  Google Scholar 

  73. McMurray JJ, Adamopoulos S, Anker SD et al (2012) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the european society of cardiology. Developed in collaboration with the heart failure association (HFA) of the ESC. Eur Heart J 33:1787–1847

    Article  PubMed  Google Scholar 

  74. Yamaji M, Tsutamoto T, Kawahara C et al (2010) Effect of eplerenone versus spironolactone on cortisol and hemoglobin A(1)(c) levels in patients with chronic heart failure. Am Heart J 160:915–921

    Article  PubMed  CAS  Google Scholar 

  75. Yamaji M, Tsutamoto T, Tanaka T et al (2009) Effect of carvedilol on plasma adiponectin concentration in patients with chronic heart failure. Circ J 73:1067–1073

    Article  PubMed  CAS  Google Scholar 

  76. Biolo A, Shibata R, Ouchi N et al (2010) Determinants of adiponectin levels in patients with chronic systolic heart failure. Am J Cardiol 105:1147–1152

    Article  PubMed  CAS  Google Scholar 

  77. Van Berendoncks AM, Beckers P, Hoymans VY et al (2011) Beta-blockers modify the prognostic value of adiponectin in chronic heart failure. Int J Cardiol 150:296–300

    Article  PubMed  Google Scholar 

  78. Krause MP, Liu Y, Vu V et al (2008) Adiponectin is expressed by skeletal muscle fibers and influences muscle phenotype and function. Am J Physiol Cell Physiol 295:C203–C212

    Article  PubMed  CAS  Google Scholar 

  79. Punyadeera C, Zorenc AH, Koopman R et al (2005) The effects of exercise and adipose tissue lipolysis on plasma adiponectin concentration and adiponectin receptor expression in human skeletal muscle. Eur J Endocrinol 152:427–436

    Article  PubMed  CAS  Google Scholar 

  80. Van Berendoncks AM, Garnier A, Beckers P et al (2010) Functional adiponectin resistance at the level of the skeletal muscle in mild to moderate chronic heart failure. Circ Heart Fail 3:185–194

    Article  PubMed  Google Scholar 

  81. Van Berendoncks AM, Garnier A, Beckers P et al (2011) Exercise training reverses adiponectin resistance in skeletal muscle of patients with chronic heart failure. Heart 97:1403–1409

    Article  PubMed  Google Scholar 

  82. Behre CJ (2007) Adiponectin: saving the starved and the overfed. Med Hypotheses 69:1290–1292

    Article  PubMed  CAS  Google Scholar 

  83. Araujo JP, Lourenco P, Rocha-Goncalves F et al (2009) Adiponectin is increased in cardiac cachexia irrespective of body mass index. Eur J Heart Fail 11:567–572

    Article  PubMed  CAS  Google Scholar 

  84. McEntegart MB, Awede B, Petrie MC et al (2007) Increase in serum adiponectin concentration in patients with heart failure and cachexia: relationship with leptin, other cytokines, and B-type natriuretic peptide. Eur Heart J 28:829–835

    Article  PubMed  CAS  Google Scholar 

  85. Jortay J, Senou M, Delaigle A et al (2010) Local induction of adiponectin reduces lipopolysaccharide-triggered skeletal muscle damage. Endocrinology 151:4840–4851

    Article  PubMed  CAS  Google Scholar 

  86. Fiaschi T, Cirelli D, Comito G et al (2009) Globular adiponectin induces differentiation and fusion of skeletal muscle cells. Cell Res 19:584–597

    Article  PubMed  CAS  Google Scholar 

  87. Ouchi N, Shibata R, Walsh K (2006) Cardioprotection by adiponectin. Trends Cardiovasc Med 16:141–146

    Article  PubMed  CAS  Google Scholar 

  88. Shibata R, Sato K, Pimentel DR et al (2005) Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med 11:1096–1103

    Article  PubMed  CAS  Google Scholar 

  89. Kintscher U. (2007) Does adiponectin resistance exist in chronic heart failure? 28: 1676–1677

  90. O’Connor CM, Whellan DJ, Lee KL et al (2009) Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 301:1439–1450

    Article  PubMed  Google Scholar 

  91. Conraads VM, Beckers P, Bosmans J et al (2002) Combined endurance/resistance training reduces plasma TNF-alpha receptor levels in patients with chronic heart failure and coronary artery disease. Eur Heart J 23:1854–1860

    Article  PubMed  CAS  Google Scholar 

  92. Coats AJS, Adamopoulos S, Radaelli A et al (1992) Controlled trial of physical training in chronic heart failure: exercise performance, hemodynamics, ventilation, and autonomic function. Circulation 85:2119–2131

    Article  PubMed  CAS  Google Scholar 

  93. Conraads VM, Beckers P, Vaes J et al (2004) Combined endurance/resistance training reduces NT-proBNP levels in patients with chronic heart failure. Eur Heart J 25:1797–1805

    Article  PubMed  CAS  Google Scholar 

  94. Siew ED, Ikizler TA (2010) Insulin resistance and protein energy metabolism in patients with advanced chronic kidney disease. Semin Dial 23:378–382

    Article  PubMed  Google Scholar 

  95. Castillero E, Nieto-Bona MP, Fernandez-Galaz C et al (2011) Fenofibrate, a PPAR{alpha} agonist, decreases atrogenes and myostatin expression and improves arthritis-induced skeletal muscle atrophy. Am J Physiol Endocrinol Metab 300:E790–E799

    Article  PubMed  CAS  Google Scholar 

  96. Hui X, Lam KS, Vanhoutte PM et al (2011) Adiponectin and cardiovascular health: an update. Br J Pharmacol 165:574–590

    Article  Google Scholar 

  97. Rimbaud S, Ruiz M, Piquereau J et al (2011) Resveratrol improves survival, hemodynamics and energetics in a rat model of hypertension leading to heart failure. PLoS ONE 6:e26391

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fund for Scientific Research, (FWO)—Flanders, (Belgium): An Van Berendoncks is supported by a PhD fellowship and Viviane Conraads is a Senior Clinical Investigator of the FWO-Flanders. Renée Ventura-Clapier is a senior scientist of the Centre National de la Recherche Scientifique.

Conflict of interest

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An M. Van Berendoncks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Berendoncks, A.M., Garnier, A., Ventura-Clapier, R. et al. Adiponectin: key role and potential target to reverse energy wasting in chronic heart failure. Heart Fail Rev 18, 557–566 (2013). https://doi.org/10.1007/s10741-012-9349-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-012-9349-4

Keywords

Navigation