Skip to main content

Advertisement

Log in

STAT3 and cardiac remodeling

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Multiple in vitro and in vivo studies showed that the signal transducer and activator of transcription 3 (STAT3) protein is involved in cardiomyocyte protection and hypertrophy and via paracrine pathways impacts on the non-myocyte compartment, i.e., the vasculature and the extracellular matrix. In this regard, STAT3 interacts with a broad range of cellular and molecular mechanisms that direct remodeling processes in cardiac physiology (exercise, pregnancy) and pathophysiology (pressure overload, ischemia/reperfusion, myocardial infarction, and cardiotoxic agents). STAT3 is constitutively activated by a multitude of factors including cytokines, growth factors, neurohormones, mechanical load, and ischemia. It acts as a signaling molecule, a transcription factor and according to latest observations as a mitochondrial protein involved in energy production. In this review, we provide an overview on STAT3 signaling and summarize the current understanding of the role of STAT3 for different aspects of cardiac remodeling obtained from numerous experimental and clinical studies. Finally, we highlight and critically discuss STAT3 signaling as a possible target for future therapeutic approaches in the setting of cardiac remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AngII:

Angiotensin II

CT-1:

Cardiotrophin-1

DOX:

Doxorubicin

ERK:

Extracellular signal-regulated kinase

ES cell:

Embryonic stem cell

gp130:

Glycoprotein-130

IL:

Interleukin

JAK:

Janus kinase

LIF:

Leukaemia inhibitory factor

MAPK:

Mitogen-activated protein kinase

MHC:

Myosin heavy chain

NF-kB:

Nuclear factor-kB

OSM:

Oncostatin M

PI3K:

Phosphatidylinositol-3-kinase

PPCM:

Peripartum cardiomyopathy

SHP2:

SH2 domain-containing cytoplasmic protein tyrosine phosphatase

sIL-6R:

Soluble IL-6 receptor

sgp130:

Soluble receptor gp130

SOCS:

Suppressor of cytokine signaling

STAT:

Signal transducer and activator of transcription

TNF-α:

Tumor necrosis factor-α

References

  1. Forrester JS et al (1976) Functional significance of regional ischemic contraction abnormalities. Circulation 54(1):64–70

    PubMed  CAS  Google Scholar 

  2. Dorn GW 2nd (2009) Novel pharmacotherapies to abrogate postinfarction ventricular remodeling. Nat Rev Cardiol 6(4):283–291

    PubMed  CAS  Google Scholar 

  3. Boengler K et al (2008) The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Ther 120(2):172–185

    PubMed  CAS  Google Scholar 

  4. Fischer P, Hilfiker-Kleiner D (2007) Survival pathways in hypertrophy and heart failure: the gp130-STAT axis. Basic Res Cardiol 102(5):393–411

    PubMed  CAS  Google Scholar 

  5. Hilfiker-Kleiner D, Hilfiker A, Drexler H (2005) Many good reasons to have STAT3 in the heart. Pharmacol Ther 107(1):131–137

    PubMed  CAS  Google Scholar 

  6. Hilfiker-Kleiner D et al (2007) A cathepsin D-Cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell 128(3):589–600

    PubMed  CAS  Google Scholar 

  7. Kurdi M, Booz GW (2009) JAK redux: a second look at the regulation and role of JAKs in the heart. Am J Physiol Heart Circ Physiol 297(5):H1545–H1556

    PubMed  CAS  Google Scholar 

  8. Hilfiker-Kleiner D et al (2004) Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury. Circ Res 95(2):187–195

    PubMed  CAS  Google Scholar 

  9. Wegrzyn J et al (2009) Function of mitochondrial Stat3 in cellular respiration. Science 323(5915):793–797

    PubMed  CAS  Google Scholar 

  10. Booz GW, Day JN, Baker KM (2002) Interplay between the cardiac renin angiotensin system and JAK-STAT signaling: role in cardiac hypertrophy, ischemia/reperfusion dysfunction, and heart failure. J Mol Cell Cardiol 34(11):1443–1453

    PubMed  CAS  Google Scholar 

  11. Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264(5164):1415–1421

    PubMed  CAS  Google Scholar 

  12. Levy DE, Lee CK (2002) What does Stat3 do? J Clin Invest 109(9):1143–1148

    PubMed  CAS  Google Scholar 

  13. Aaronson DS, Horvath CM (2002) A road map for those who know JAK-STAT. Science 296(5573):1653–1655

    PubMed  CAS  Google Scholar 

  14. Fischer P, Hilfiker-Kleiner D (2008) Role of gp130-mediated signalling pathways in the heart and its impact on potential therapeutic aspects. Br J Pharmacol 153(Suppl 1):414–427

    Google Scholar 

  15. Heinrich PC et al (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374(Pt 1):1–20

    PubMed  CAS  Google Scholar 

  16. Snyder M, Huang XY, Zhang JJ (2008) Identification of novel direct Stat3 target genes for control of growth and differentiation. J Biol Chem 283(7):3791–3798

    PubMed  CAS  Google Scholar 

  17. Akira S et al (1994) Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 77(1):63–71

    PubMed  CAS  Google Scholar 

  18. Al Zaid Siddiquee K, Turkson J (2008) STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res 18(2):254–267

    PubMed  CAS  Google Scholar 

  19. Silva CM (2004) Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis. Oncogene 23(48):8017–8023

    PubMed  CAS  Google Scholar 

  20. Kirito K et al (2002) Identification of the human erythropoietin receptor region required for Stat1 and Stat3 activation. Blood 99(1):102–110

    PubMed  CAS  Google Scholar 

  21. Li Y et al (2006) Reduction of inflammatory cytokine expression and oxidative damage by erythropoietin in chronic heart failure. Cardiovasc Res 71(4):684–694

    PubMed  CAS  Google Scholar 

  22. McGaffin KR et al (2009) Leptin attenuates cardiac apoptosis after chronic ischaemic injury. Cardiovasc Res 83(2):313–324

    PubMed  CAS  Google Scholar 

  23. Yang R, Barouch LA (2007) Leptin signaling and obesity: cardiovascular consequences. Circ Res 101(6):545–559

    PubMed  CAS  Google Scholar 

  24. Kodama H et al (1998) Biphasic activation of the JAK/STAT pathway by angiotensin II in rat cardiomyocytes. Circ Res 82(2):244–250

    PubMed  CAS  Google Scholar 

  25. Abe K et al (2001) The YXXQ motif in gp 130 is crucial for STAT3 phosphorylation at Ser727 through an H7-sensitive kinase pathway. Oncogene 20(27):3464–3474

    PubMed  CAS  Google Scholar 

  26. Decker T, Kovarik P (2000) Serine phosphorylation of STATs. Oncogene 19(21):2628–2637

    PubMed  CAS  Google Scholar 

  27. Aggarwal BB et al (2009) Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann N Y Acad Sci 1171:59–76

    PubMed  CAS  Google Scholar 

  28. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9(11):798–809

    PubMed  CAS  Google Scholar 

  29. Dabir S, Kluge A, Dowlati A (2009) The association and nuclear translocation of the PIAS3-STAT3 complex is ligand and time dependent. Mol Cancer Res 7(11):1854–1860

    PubMed  CAS  Google Scholar 

  30. Kwon MC et al (2008) Crif1 is a novel transcriptional coactivator of STAT3. EMBO J 27(4):642–653

    PubMed  CAS  Google Scholar 

  31. Wang R, Cherukuri P, Luo J (2005) Activation of Stat3 sequence-specific DNA binding and transcription by p300/CREB-binding protein-mediated acetylation. J Biol Chem 280(12):11528–11534

    PubMed  CAS  Google Scholar 

  32. Beckles DL, Mascareno E, Siddiqui MA (2006) Inhibition of Jak2 phosphorylation attenuates pressure overload cardiac hypertrophy. Vascul Pharmacol 45(6):350–357

    PubMed  CAS  Google Scholar 

  33. Hirota H et al (1999) Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 97(2):189–198

    PubMed  CAS  Google Scholar 

  34. Jacoby JJ et al (2003) Cardiomyocyte-restricted knockout of STAT3 results in higher sensitivity to inflammation, cardiac fibrosis, and heart failure with advanced age. Proc Natl Acad Sci USA 100(22):12929–12934

    PubMed  CAS  Google Scholar 

  35. Mascareno E, Siddiqui MA (2000) The role of Jak/STAT signaling in heart tissue renin-angiotensin system. Mol Cell Biochem 212(1–2):171–175

    PubMed  CAS  Google Scholar 

  36. Pan J et al (1997) Role of angiotensin II in activation of the JAK/STAT pathway induced by acute pressure overload in the rat heart. Circ Res 81(4):611–617

    PubMed  CAS  Google Scholar 

  37. Pan J et al (1998) Involvement of gp130-mediated signaling in pressure overload-induced activation of the JAK/STAT pathway in rodent heart. Heart Vessels 13(4):199–208

    PubMed  CAS  Google Scholar 

  38. Pan J et al (1999) Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. Circ Res 84(10):1127–1136

    PubMed  CAS  Google Scholar 

  39. Kunisada K et al (2000) Signal transducer and activator of transcription 3 in the heart transduces not only a hypertrophic signal but a protective signal against doxorubicin-induced cardiomyopathy. Proc Natl Acad Sci USA 97(1):315–319

    PubMed  CAS  Google Scholar 

  40. Yasukawa H et al (2001) Suppressor of cytokine signaling-3 is a biomechanical stress-inducible gene that suppresses gp130-mediated cardiac myocyte hypertrophy and survival pathways. J Clin Invest 108(10):1459–1467

    PubMed  CAS  Google Scholar 

  41. Ernst M, Jenkins BJ (2004) Acquiring signalling specificity from the cytokine receptor gp130. Trends Genet 20(1):23–32

    PubMed  CAS  Google Scholar 

  42. Fischer P et al (2008) YIA916 Kardiales STAT3 ist essentiell für den Erhalt der linksventrikulären Funktion, Schutz vor maladaptivem kardialen Remodeling und das Überleben unter chronischem ß-adrenergen. Stress Clin Res Cardiol 99(Suppl 1):YIA916

    Google Scholar 

  43. Takahashi N et al (2005) Hypertrophic responses to cardiotrophin-1 are not mediated by STAT3, but via a MEK5-ERK5 pathway in cultured cardiomyocytes. J Mol Cell Cardiol 38(1):185–192

    PubMed  CAS  Google Scholar 

  44. Kunisada K et al (1998) Activation of gp130 transduces hypertrophic signals via STAT3 in cardiac myocytes. Circulation 98(4):346–352

    PubMed  CAS  Google Scholar 

  45. Wollert KC et al (1996) Cardiotrophin-1 activates a distinct form of cardiac muscle cell hypertrophy. Assembly of sarcomeric units in series VIA gp130/leukemia inhibitory factor receptor-dependent pathways. J Biol Chem 271(16):9535–9545

    PubMed  CAS  Google Scholar 

  46. Alas S, Bonavida B (2001) Rituximab inactivates signal transducer and activation of transcription 3 (STAT3) activity in B-non-Hodgkin’s lymphoma through inhibition of the interleukin 10 autocrine/paracrine loop and results in down-regulation of Bcl-2 and sensitization to cytotoxic drugs. Cancer Res 61(13):5137–5144

    PubMed  CAS  Google Scholar 

  47. Alas S, Bonavida B (2003) Inhibition of constitutive STAT3 activity sensitizes resistant non-Hodgkin’s lymphoma and multiple myeloma to chemotherapeutic drug-mediated apoptosis. Clin Cancer Res 9(1):316–326

    PubMed  CAS  Google Scholar 

  48. Catlett-Falcone R et al (1999) Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10(1):105–115

    PubMed  CAS  Google Scholar 

  49. Epling-Burnette PK et al (2001) Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J Clin Invest 107(3):351–362

    PubMed  CAS  Google Scholar 

  50. Barre B et al (2007) The STAT3 oncogene as a predictive marker of drug resistance. Trends Mol Med 13(1):4–11

    PubMed  CAS  Google Scholar 

  51. Niu G et al (2005) Role of Stat3 in regulating p53 expression and function. Mol Cell Biol 25(17):7432–7440

    PubMed  CAS  Google Scholar 

  52. Negoro S et al (2001) Activation of signal transducer and activator of transcription 3 protects cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress through the upregulation of manganese superoxide dismutase. Circulation 104(9):979–981

    PubMed  CAS  Google Scholar 

  53. Stephanou A, Latchman DS (1999) Transcriptional regulation of the heat shock protein genes by STAT family transcription factors. Gene Expr 7(4–6):311–319

    PubMed  CAS  Google Scholar 

  54. Yamauchi-Takihara K, Kishimoto T (2000) A novel role for STAT3 in cardiac remodeling. Trends Cardiovasc Med 10(7):298–303

    PubMed  CAS  Google Scholar 

  55. Lu Y et al (2008) JAK/STAT and PI3 K/AKT pathways form a mutual transactivation loop and afford resistance to oxidative stress-induced apoptosis in cardiomyocytes. Cell Physiol Biochem 21(4):305–314

    PubMed  CAS  Google Scholar 

  56. Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 115(3):547–555

    PubMed  CAS  Google Scholar 

  57. Huang G et al (2004) GRIM-19, a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I. Mol Cell Biol 24(19):8447–8456

    PubMed  CAS  Google Scholar 

  58. Lu H, Cao X (2008) GRIM-19 is essential for maintenance of mitochondrial membrane potential. Mol Biol Cell 19(5):1893–1902

    PubMed  CAS  Google Scholar 

  59. Lufei C et al (2003) GRIM-19, a death-regulatory gene product, suppresses Stat3 activity via functional interaction. EMBO J 22(6):1325–1335

    PubMed  CAS  Google Scholar 

  60. Zhang J et al (2003) The cell death regulator GRIM-19 is an inhibitor of signal transducer and activator of transcription 3. Proc Natl Acad Sci USA 100(16):9342–9347

    PubMed  CAS  Google Scholar 

  61. Sano M et al (2000) Autocrine/Paracrine secretion of IL-6 family cytokines causes angiotensin II-induced delayed STAT3 activation. Biochem Biophys Res Commun 269(3):798–802

    PubMed  CAS  Google Scholar 

  62. Fukuzawa J et al (2000) Cardiotrophin-1 increases angiotensinogen mRNA in rat cardiac myocytes through STAT3: an autocrine loop for hypertrophy. Hypertension 35(6):1191–1196

    PubMed  CAS  Google Scholar 

  63. Mascareno E, Dhar M, Siddiqui MA (1998) Signal transduction and activator of transcription (STAT) protein-dependent activation of angiotensinogen promoter: a cellular signal for hypertrophy in cardiac muscle. Proc Natl Acad Sci USA 95(10):5590–5594

    PubMed  CAS  Google Scholar 

  64. Tone E et al (1998) Angiotensin II interferes with leukemia inhibitory factor-induced STAT3 activation in cardiac myocytes. Biochem Biophys Res Commun 253(1):147–150

    PubMed  CAS  Google Scholar 

  65. Paradis P et al (2000) Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc Natl Acad Sci USA 97(2):931–936

    PubMed  CAS  Google Scholar 

  66. Yue H et al (2010) Role of nuclear unphosphorylated STAT3 in angiotensin II type 1 receptor-induced cardiac hypertrophy. Cardiovasc Res 85(1):90–99

    Google Scholar 

  67. Takeda K et al (1997) Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci USA 94(8):3801–3804

    PubMed  CAS  Google Scholar 

  68. Kano A et al (2003) Endothelial cells require STAT3 for protection against endotoxin-induced inflammation. J Exp Med 198(10):1517–1525

    PubMed  CAS  Google Scholar 

  69. Osugi T et al (2002) Cardiac-specific activation of signal transducer and activator of transcription 3 promotes vascular formation in the heart. J Biol Chem 277(8):6676–6681

    PubMed  CAS  Google Scholar 

  70. Bartoli M et al (2003) VEGF differentially activates STAT3 in microvascular endothelial cells. Faseb J 17(11):1562–1564

    PubMed  CAS  Google Scholar 

  71. Ahmed MS et al (2004) Connective tissue growth factor-a novel mediator of angiotensin II-stimulated cardiac fibroblast activation in heart failure in rats. J Mol Cell Cardiol 36(3):393–404

    PubMed  CAS  Google Scholar 

  72. Nishioka T et al (2010) Tenascin-C may aggravate left ventricular remodeling and function after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 298(3):H1072–H1078

    Google Scholar 

  73. Zaman AK et al (2009) A profibrotic effect of plasminogen activator inhibitor type-1 (PAI-1) in the heart. Exp Biol Med (Maywood) 234(3):246–254

    CAS  Google Scholar 

  74. Gao Y et al (2010) Nogo-66 regulates nanog expression through stat3 pathway in murine embryonic stem cells. Stem Cells Dev 19(1):53–60

    Google Scholar 

  75. Ko SY et al (2006) Identification of Jmjd1a as a STAT3 downstream gene in mES cells. Cell Struct Funct 31(2):53–62

    PubMed  CAS  Google Scholar 

  76. Sekkai D et al (2005) Microarray analysis of LIF/Stat3 transcriptional targets in embryonic stem cells. Stem Cells 23(10):1634–1642

    PubMed  CAS  Google Scholar 

  77. Chambers I, Smith A (2004) Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene 23(43):7150–7160

    PubMed  CAS  Google Scholar 

  78. Sato N et al (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10(1):55–63

    PubMed  CAS  Google Scholar 

  79. Vallier L, Alexander M, Pedersen RA (2005) Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci 118(Pt 19):4495–4509

    PubMed  CAS  Google Scholar 

  80. Longshaw VM et al (2009) Knockdown of the co-chaperone Hop promotes extranuclear accumulation of Stat3 in mouse embryonic stem cells. Eur J Cell Biol 88(3):153–166

    PubMed  CAS  Google Scholar 

  81. Prescott J, Coetzee GA (2006) Molecular chaperones throughout the life cycle of the androgen receptor. Cancer Lett 231(1):12–19

    PubMed  CAS  Google Scholar 

  82. Prinsloo E et al (2009) Chaperoning stem cells: a role for heat shock proteins in the modulation of stem cell self-renewal and differentiation? Bioessays 31(4):370–377

    PubMed  CAS  Google Scholar 

  83. Schuldiner M et al (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 97(21):11307–11312

    PubMed  CAS  Google Scholar 

  84. Daheron L et al (2004) LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells 22(5):770–778

    PubMed  CAS  Google Scholar 

  85. Sumi T et al (2004) STAT3 is dispensable for maintenance of self-renewal in nonhuman primate embryonic stem cells. Stem Cells 22(5):861–872

    PubMed  CAS  Google Scholar 

  86. Burdon T, Smith A, Savatier P (2002) Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol 12(9):432–438

    PubMed  CAS  Google Scholar 

  87. Foshay K et al (2005) JAK2/STAT3 directs cardiomyogenesis within murine embryonic stem cells in vitro. Stem Cells 23(4):530–543

    PubMed  CAS  Google Scholar 

  88. Humphrey RK et al (2004) Maintenance of pluripotency in human embryonic stem cells is STAT3 independent. Stem Cells 22(4):522–530

    PubMed  CAS  Google Scholar 

  89. Rajasingh J et al (2007) STAT3-dependent mouse embryonic stem cell differentiation into cardiomyocytes: analysis of molecular signaling and therapeutic efficacy of cardiomyocyte precommitted mES transplantation in a mouse model of myocardial infarction. Circ Res 101(9):910–918

    PubMed  CAS  Google Scholar 

  90. Xie X et al (2009) Imaging of STAT3 signaling pathway during mouse embryonic stem cell differentiation. Stem Cells Dev 18(2):205–214

    PubMed  CAS  Google Scholar 

  91. Mohri T et al (2006) Leukemia inhibitory factor induces endothelial differentiation in cardiac stem cells. J Biol Chem 281(10):6442–6447

    PubMed  CAS  Google Scholar 

  92. Mohri T et al (2009) Signals through glycoprotein 130 regulate the endothelial differentiation of cardiac stem cells. Arterioscler Thromb Vasc Biol 29(5):754–760

    PubMed  CAS  Google Scholar 

  93. Yang Y et al (2009) STAT3 induces muscle stem cell differentiation by interaction with myoD. Cytokine 46(1):137–141

    PubMed  CAS  Google Scholar 

  94. Huebener P et al (2008) CD44 is critically involved in infarct healing by regulating the inflammatory and fibrotic response. J Immunol 180(4):2625–2633

    PubMed  CAS  Google Scholar 

  95. Pfitzner E et al (2004) The role of STATs in inflammation and inflammatory diseases. Curr Pharm Des 10(23):2839–2850

    PubMed  CAS  Google Scholar 

  96. Zhong Z, Wen Z, Darnell JE Jr (1994) Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264(5155):95–98

    PubMed  CAS  Google Scholar 

  97. Lutticken C et al (1994) Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. Science 263(5143):89–92

    PubMed  CAS  Google Scholar 

  98. Zhang Z, Fuller GM (1997) The competitive binding of STAT3 and NF-kappaB on an overlapping DNA binding site. Biochem Biophys Res Commun 237(1):90–94

    PubMed  Google Scholar 

  99. Frangogiannis NG et al (2000) IL-10 is induced in the reperfused myocardium and may modulate the reaction to injury. J Immunol 165(5):2798–2808

    PubMed  CAS  Google Scholar 

  100. Yao L et al (2008) Acute myocardial infarction induced increases in plasma tumor necrosis factor-alpha and interleukin-10 are associated with the activation of poly(ADP-ribose) polymerase of circulating mononuclear cell. Int J Cardiol 123(3):366–368

    PubMed  Google Scholar 

  101. Murray PJ (2006) STAT3-mediated anti-inflammatory signalling. Biochem Soc Trans 34(Pt 6):1028–1031

    PubMed  CAS  Google Scholar 

  102. Obana M et al (2010) Therapeutic activation of signal transducer and activator of transcription 3 by interleukin-11 ameliorates cardiac fibrosis after myocardial infarction. Circulation 121(5):684–691

    Google Scholar 

  103. Skyschally A et al (2007) Bidirectional role of tumor necrosis factor-alpha in coronary microembolization: progressive contractile dysfunction versus delayed protection against infarction. Circ Res 100(1):140–146

    PubMed  CAS  Google Scholar 

  104. Boengler K, Schulz R, Heusch G (2009) Loss of cardioprotection with ageing. Cardiovasc Res 83(2):247–261

    PubMed  CAS  Google Scholar 

  105. Kubota T et al (1997) Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res 81(4):627–635

    PubMed  CAS  Google Scholar 

  106. Boengler K et al (2008) Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice. Circ Res 102(1):131–135

    PubMed  CAS  Google Scholar 

  107. Selle T et al (2009) Reviewing peripartum cardiomyopathy: current state of knowledge. Future Cardiol 5(2):175–189

    PubMed  Google Scholar 

  108. Cataldo L et al (2000) Inhibition of oncogene STAT3 phosphorylation by a prolactin antagonist, hPRL-G129R, in T-47D human breast cancer cells. Int J Oncol 17(6):1179–1185

    PubMed  CAS  Google Scholar 

  109. Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440(7086):944–948

    PubMed  CAS  Google Scholar 

  110. Corbacho AM, Martinez De La Escalera G, Clapp C (2002) Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis. J Endocrinol 173(2):219–238

    PubMed  CAS  Google Scholar 

  111. Macotela Y et al (2006) Matrix metalloproteases from chondrocytes generate an antiangiogenic 16 kDa prolactin. J Cell Sci 119(Pt 9):1790–1800

    PubMed  CAS  Google Scholar 

  112. Tabruyn SP et al (2003) The antiangiogenic factor 16 K human prolactin induces caspase-dependent apoptosis by a mechanism that requires activation of nuclear factor-kappaB. Mol Endocrinol 17(9):1815–1823

    PubMed  CAS  Google Scholar 

  113. Sliwa K et al (2009) Long-term outcome of Peripartum cardiomyopathy in a population with high seropositivity for human immunodeficiency virus. Int J Cardiol. doi:10.1016/j.ijcard.2009.08.022

  114. Chandrasekar B et al (1999) Regulation of CCAAT/Enhancer binding protein, interleukin-6, interleukin-6 receptor, and gp130 expression during myocardial ischemia/reperfusion. Circulation 99(3):427–433

    PubMed  CAS  Google Scholar 

  115. Kukielka GL et al (1995) Induction of interleukin-6 synthesis in the myocardium. Potential role in postreperfusion inflammatory injury. Circulation 92(7):1866–1875

    PubMed  CAS  Google Scholar 

  116. Yamauchi-Takihara K et al (1995) Hypoxic stress induces cardiac myocyte-derived interleukin-6. Circulation 91(5):1520–1524

    PubMed  CAS  Google Scholar 

  117. McCormick J et al (2006) Free radical scavenging inhibits STAT phosphorylation following in vivo ischemia/reperfusion injury. FASEB J 20(12):2115–2117

    PubMed  CAS  Google Scholar 

  118. Negoro S et al (2000) Activation of JAK/STAT pathway transduces cytoprotective signal in rat acute myocardial infarction. Cardiovasc Res 47(4):797–805

    PubMed  CAS  Google Scholar 

  119. Oshima Y et al (2005) STAT3 mediates cardioprotection against ischemia/reperfusion injury through metallothionein induction in the heart. Cardiovasc Res 65(2):428–435

    PubMed  CAS  Google Scholar 

  120. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74(5):1124–1136

    PubMed  CAS  Google Scholar 

  121. Hattori R et al (2001) Role of STAT3 in ischemic preconditioning. J Mol Cell Cardiol 33(11):1929–1936

    PubMed  CAS  Google Scholar 

  122. Xuan YT et al (2001) An essential role of the JAK-STAT pathway in ischemic preconditioning. Proc Natl Acad Sci USA 98(16):9050–9055

    PubMed  CAS  Google Scholar 

  123. Xuan YT et al (2007) Endothelial nitric oxide synthase plays an obligatory role in the late phase of ischemic preconditioning by activating the protein kinase C epsilon p44/42 mitogen-activated protein kinase pSer-signal transducers and activators of transcription1/3 pathway. Circulation 116(5):535–544

    PubMed  CAS  Google Scholar 

  124. Smith RM et al (2004) Genetic depletion of cardiac myocyte STAT-3 abolishes classical preconditioning. Cardiovasc Res 63(4):611–616

    PubMed  CAS  Google Scholar 

  125. Kuzuya T et al (1993) Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res 72(6):1293–1299

    PubMed  CAS  Google Scholar 

  126. Marber MS et al (1993) Cardiac stress protein elevation 24 h after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 88(3):1264–1272

    PubMed  CAS  Google Scholar 

  127. Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118(19):1915–1919

    PubMed  Google Scholar 

  128. Myers CE et al (1977) Adriamycin: the role of lipid peroxidation in cardiac toxicity and tumor response. Science 197(4299):165–167

    PubMed  CAS  Google Scholar 

  129. Frias MA et al (2008) The PGE2-Stat3 interaction in doxorubicin-induced myocardial apoptosis. Cardiovasc Res 80(1):69–77

    PubMed  CAS  Google Scholar 

  130. Lee V, Randhawa AK, Singal PK (1991) Adriamycin-induced myocardial dysfunction in vitro is mediated by free radicals. Am J Physiol 261(4 Pt 2):H989–H995

    PubMed  CAS  Google Scholar 

  131. Podewski EK et al (2003) Alterations in Janus kinase (JAK)-signal transducers and activators of transcription (STAT) signaling in patients with end-stage dilated cardiomyopathy. Circulation 107:798–802

    PubMed  CAS  Google Scholar 

  132. Birner CM et al (2007) Head-to-head comparison of BNP and IL-6 as markers of clinical and experimental heart failure: Superiority of BNP. Cytokine 40(2):89–97

    PubMed  CAS  Google Scholar 

  133. Fisman EZ et al (2006) Interleukin-6 and the risk of future cardiovascular events in patients with angina pectoris and/or healed myocardial infarction. Am J Cardiol 98(1):14–18

    PubMed  CAS  Google Scholar 

  134. Tsutamoto T et al (2007) Plasma level of cardiotrophin-1 as a prognostic predictor in patients with chronic heart failure. Eur J Heart Fail 9(10):1032–1037

    PubMed  CAS  Google Scholar 

  135. Ahmad S et al (2009) Circulating proinflammatory cytokines and N-terminal pro-brain natriuretic peptide significantly decrease with recovery of left ventricular function in patients with dilated cardiomyopathy. Mol Cell Biochem 324(1–2):139–145

    PubMed  CAS  Google Scholar 

  136. Hirota H et al (2004) Circulating interleukin-6 family cytokines and their receptors in patients with congestive heart failure. Heart Vessels 19(5):237–241

    PubMed  Google Scholar 

  137. Hogye M et al (2004) Comparison of circulating levels of interleukin-6 and tumor necrosis factor-alpha in hypertrophic cardiomyopathy and in idiopathic dilated cardiomyopathy. Am J Cardiol 94(2):249–251

    PubMed  CAS  Google Scholar 

  138. Petretta M et al (2000) Circulating levels of cytokines and their site of production in patients with mild to severe chronic heart failure. Am Heart J 140(6):E28

    PubMed  CAS  Google Scholar 

  139. Bermudez EA et al (2002) Interrelationships among circulating interleukin-6, C-reactive protein, and traditional cardiovascular risk factors in women. Arterioscler Thromb Vasc Biol 22(10):1668–1673

    PubMed  CAS  Google Scholar 

  140. Antonicelli R et al (2005) The interleukin-6–174 G>C promoter polymorphism is associated with a higher risk of death after an acute coronary syndrome in male elderly patients. Int J Cardiol 103(3):266–271

    PubMed  Google Scholar 

  141. Zolk O et al (2002) Augmented expression of cardiotrophin-1 in failing human hearts is accompanied by diminished glycoprotein 130 receptor protein abundance. Circulation 106(12):1442–1446

    PubMed  CAS  Google Scholar 

  142. Pemberton CJ et al (2005) Plasma cardiotrophin-1 is elevated in human hypertension and stimulated by ventricular stretch. Cardiovasc Res 68(1):109–117

    PubMed  CAS  Google Scholar 

  143. Gonzalez A et al (2005) Usefulness of plasma cardiotrophin-1 in assessment of left ventricular hypertrophy regression in hypertensive patients. J Hypertens 23(12):2297–2304

    PubMed  CAS  Google Scholar 

  144. Calabro P et al (2009) Contemporary evidence of coronary atherosclerotic disease and myocardial bridge on left anterior descending artery in a patient with a nonobstructive hypertrophic cardiomyopathy. J Cardiovasc Med (Hagerstown). doi: 10.2459/JCM.0b013e3283339acd

  145. Lopez B et al (2007) Association of increased plasma cardiotrophin-1 with inappropriate left ventricular mass in essential hypertension. Hypertension 50(5):977–983

    PubMed  CAS  Google Scholar 

  146. Eiken HG et al (2001) Myocardial gene expression of leukaemia inhibitory factor, interleukin-6 and glycoprotein 130 in end-stage human heart failure. Eur J Clin Invest 31(5):389–397

    PubMed  CAS  Google Scholar 

  147. Kurdi M, Booz GW (2007) Can the protective actions of JAK-STAT in the heart be exploited therapeutically? Parsing the regulation of interleukin-6-type cytokine signaling. J Cardiovasc Pharmacol 50(2):126–141

    PubMed  CAS  Google Scholar 

  148. Kodama H et al (2000) Significance of ERK cascade compared with JAK/STAT and PI3-K pathway in gp130-mediated cardiac hypertrophy. Am J Physiol Heart Circ Physiol 279(4):H1635–H1644

    PubMed  CAS  Google Scholar 

  149. Hiraoka E et al (2003) PI 3-kinase-Akt-p70 S6 kinase in hypertrophic responses to leukemia inhibitory factor in cardiac myocytes. Kobe J Med Sci 49(1–2):25–37

    PubMed  CAS  Google Scholar 

  150. Jamshidi Y et al (2004) Signal-transduction pathways involved in the hypertrophic effect of hsp56 in neonatal cardiomyocytes. J Mol Cell Cardiol 36(3):381–392

    PubMed  CAS  Google Scholar 

  151. Nakaoka Y et al (2003) Activation of gp130 transduces hypertrophic signal through interaction of scaffolding/docking protein Gab1 with tyrosine phosphatase SHP2 in cardiomyocytes. Circ Res 93(3):221–229

    PubMed  CAS  Google Scholar 

  152. Schuringa JJ et al (2001) Ser727-dependent transcriptional activation by association of p300 with STAT3 upon IL-6 stimulation. FEBS Lett 495(1–2):71–76

    PubMed  CAS  Google Scholar 

  153. Dawn B et al (2004) IL-6 plays an obligatory role in late preconditioning via JAK-STAT signaling and upregulation of iNOS and COX-2. Cardiovasc Res 64(1):61–71

    PubMed  CAS  Google Scholar 

  154. Kovacic JC et al (2010) Stat3-dependent acute Rantes production in vascular smooth muscle cells modulates inflammation following arterial injury in mice. J Clin Invest 120(1):303–314

    Google Scholar 

  155. Turkson J (2004) STAT proteins as novel targets for cancer drug discovery. Expert Opin Ther Targets 8(5):409–422

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Hilfiker-Kleiner.

Additional information

We wish to dedicate this review to Prof H. Drexler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haghikia, A., Stapel, B., Hoch, M. et al. STAT3 and cardiac remodeling. Heart Fail Rev 16, 35–47 (2011). https://doi.org/10.1007/s10741-010-9170-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-010-9170-x

Keywords

Navigation