Skip to main content

Advertisement

Log in

Iterative optimization algorithm with parameter estimation for the ambulance location problem

  • Published:
Health Care Management Science Aims and scope Submit manuscript

Abstract

The emergency vehicle location problem to determine the number of ambulance vehicles and their locations satisfying a required reliability level is investigated in this study. This is a complex nonlinear issue involving critical decision making that has inherent stochastic characteristics. This paper studies an iterative optimization algorithm with parameter estimation to solve the emergency vehicle location problem. In the suggested algorithm, a linear model determines the locations of ambulances, while a hypercube simulation is used to estimate and provide parameters regarding ambulance locations. First, we suggest an iterative hypercube optimization algorithm in which interaction parameters and rules for the hypercube and optimization are identified. The interaction rules employed in this study enable our algorithm to always find the locations of ambulances satisfying the reliability requirement. We also propose an iterative simulation optimization algorithm in which the hypercube method is replaced by a simulation, to achieve computational efficiency. The computational experiments show that the iterative simulation optimization algorithm performs equivalently to the iterative hypercube optimization. The suggested algorithms are found to outperform existing algorithms suggested in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. ReVelle C, Hogan K (1988) A reliability constrained siting model with local estimates of busy fractions. Environ Plan B 15(2):143–152. doi:10.1068/b150143

    Article  Google Scholar 

  2. ReVelle C, Hogan K (1989) The maximum availability location problem. Transp Sci 23(3):192–200. doi:10.1287/trsc.23.3.192

    Article  Google Scholar 

  3. ReVelle C, Hogan K (1989) The maximum reliability location problem and α-reliable p-center problem: derivatives of the probabilistic location set covering problem. Ann Oper Res 18(1):155–174. doi:10.1007/BF02097801

    Article  Google Scholar 

  4. Toregas CR, Swain R, ReVelle CS, Bergman L (1971) The location of emergency service facilities. Oper Res 19(6):1363–1373. doi:10.1287/opre.19.6.1363

    Article  Google Scholar 

  5. Church RL, ReVelle CS (1974) The maximal covering location problem. Pap Reg Sci Assoc 32(1):101–118. doi:10.1111/j.1435-5597.1974.tb00902.x

    Article  Google Scholar 

  6. Brotcorne L, Laporte G, Semet F (2003) Ambulance location and relocation models. Eur J Oper Res 147(3):451–463. doi:10.1016/S0377-2217(02)00364-8

    Article  Google Scholar 

  7. Daskin MS, Stern EH (1981) A hierarchical objective set covering model for emergency medical service vehicle deployment. Transp Sci 15(2):137–152. doi:10.1287/trsc.15.2.137

    Article  Google Scholar 

  8. Hogan K, ReVelle CS (1986) Concepts and applications of backup coverage. Manag Sci 32(11):1434–1444. doi:10.1287/mnsc.32.11.1434

    Article  Google Scholar 

  9. Gendreau M, Laporte G, Semet F (1997) Solving an ambulance location model by tabu search. Locat Sci 5(2):75–88. doi:10.1016/S0966-8349(97)00015-6

    Article  Google Scholar 

  10. Shariat-Mohaymany A, Babaei M, Moadi S, Amiripour SM (2012) Linear upper-bound unavailability set covering models for locating ambulances: Application to Tehran rural roads. Eur J Oper Res 221(1):263–272. doi:10.1016/j.ejor.2012.03.015

    Article  Google Scholar 

  11. Larson RC (1974) Hypercube queueing model for facility location and redistricting in urban emergency services. Comput Oper Res 1(1):67–95. doi:10.1016/0305-0548(74)90076-8

    Article  Google Scholar 

  12. Larson RC (1975) Approximating the performance of urban emergency service systems. Oper Res 23(5):845–868. doi:10.1287/opre.23.5.845

    Article  Google Scholar 

  13. Jarvis JP (1985) Approximating the equilibrium behavior of multi-server loss systems. Manag Sci 31(2):235–239. doi:10.1287/mnsc.31.2.235

    Article  Google Scholar 

  14. Goldberg J, Szidarovszky F (1991) Methods for solving nonlinear equations used in evaluating emergency vehicle busy probabilities. Oper Res 39(6):903–916. doi:10.1287/opre.39.6.903

    Article  Google Scholar 

  15. Atkinson JB, Kovalenko IN, Kuznetsov N, Mykhalevych KV (2006) Heuristic solution methods for a hypercube queueing model of the deployment of emergency systems. Cybern Syst Anal 42(3):379–391. doi:10.1007/s10559-006-0075-6

    Article  Google Scholar 

  16. Atkinson JB, Kovalenko IN, Kuznetsov N, Mykhalevych KV (2008) A hypercube queuing loss model with customer-dependent service rates. Eur J Oper Res 191(1):223–239. doi:10.1016/j.ejor.2007.08.014

    Article  Google Scholar 

  17. Batta R, Dolan JM, Krishnamurthy NN (1989) The maximal expected covering location problem: revisited. Transp Sci 23(4):277–287. doi:10.1287/trsc.23.4.277

    Article  Google Scholar 

  18. Chiyoshi F, Galvao RD, Morabito R (2003) A note on solutions to the maximal expected covering location problem. Comput Oper Res 30(1):87–96. doi:10.1016/S0305-0548(01)00083-1

    Article  Google Scholar 

  19. Saydam C, Aytug H (2003) Accurate estimation of expected coverage: revisited. Socio-Econ Plan Sci 37(1):69–80. doi:10.1016/S0038-0121(02)00004-6

    Article  Google Scholar 

  20. Galvao RD, Chiyoshi F, Morabito R (2005) Towards unified formulations and extensions of two classical probabilistic location models. Comput Oper Res 32(1):15–33. doi:10.1016/S0305-0548(03)00200-4

    Article  Google Scholar 

  21. Geroliminis N, Karlaftis MG, Skabardonis A (2009) A spatial queuing model for the emergency vehicle districting and location problem. Transp Res Part B 43(7):798–811. doi:10.1016/j.trb.2009.01.006

    Article  Google Scholar 

  22. Geroliminis N, Kepaptsoglou K, Karlaftis MG (2011) A hybrid hypercube–genetic algorithm approach for deploying many emergency response mobile units in an urban network. Eur J Oper Res 210(2):287–300. doi:10.1016/j.ejor.2010.08.031

    Article  Google Scholar 

  23. Iannoni AP, Morabito R, Saydam C (2008) A hypercube queueing model embedded into a genetic algorithm for ambulance deployment on highways. Ann Oper Res 157(1):207–224. doi:10.1007/s10479-007-0195-z

    Article  Google Scholar 

  24. Rajagopalan HK, Saydam C, Xiao J (2008) A multiperiod set covering location model for a dynamic redeployment of ambulances. Comput Oper Res 35(3):814–826. doi:10.1016/j.cor.2006.04.003

    Article  Google Scholar 

  25. Savas E (1969) Simulation and cost-effectiveness analysis of New York’s emergency ambulance service. Manag Sci 15(12):608–627. doi:10.1287/mnsc.15.12.B608

    Article  Google Scholar 

  26. Berlin G, Liebman J (1974) Mathematical analysis of emergency ambulance locations. Socio-Econ Plan Sci 8(6):323–328. doi:10.1016/0038-0121(74)90036-6

    Article  Google Scholar 

  27. Fitzsimmons JA (1973) A methodology for emergency ambulance deployment. Manag Sci 19(6):627–636. doi:10.1287/mnsc.19.6.627

    Article  Google Scholar 

  28. Borras F, Pastor JT (2002) The ex-post evaluation of the minimum local reliability level: an enhanced probabilistic location set covering model. Ann Oper Res 111(1–4):51–74. doi:10.1287/mnsc.19.6.627

    Article  Google Scholar 

  29. Daskin MS (1983) A maximum expected location model: Formulation, properties and heuristic solution. Transp Sci 17(1):48–70. doi:10.1287/trsc.17.1.48

    Article  Google Scholar 

  30. Repede JF, Bernardo JJ (1994) Developing and validating a decision support system for locating emergency medical vehicles in Louisville, Kentucky. Eur J Oper Res 75(3):567–581. doi:10.1016/0377-2217(94)90297-6

    Article  Google Scholar 

  31. Goldberg J, Dietrich R, Chen JM, Mitwasi MG (1990) Validating and applying a model for locating emergency medical services in Tucson, AZ. Eur J Oper Res 49(3):308–324. doi:10.1016/0377-2217(90)90402-W

    Article  Google Scholar 

  32. Ball MO, Lin LF (1993) A reliability model applied to emergency service vehicle location. Oper Res 41(1):18–36. doi:10.1287/opre.41.1.18

    Article  Google Scholar 

  33. Marianov V, ReVelle CS (1994) The queueing probabilistic location set covering problem and some extensions. Socio-Econ Plan Sci 28(3):167–178. doi:10.1016/0038-0121(94)90003-5

    Article  Google Scholar 

  34. Lim YS, Kim SH, Lee YH (2012) A study of ambulance location problem applying the iterative procedure of simulation and optimization. J Korean Oper Res Manag Sci Soc 37(4):197–209. doi:10.7737/JKORMS.2012.37.4.197

    Google Scholar 

  35. Serra D (1989) The pq-Median Problem: Location and Districting of Hierarchical Facilities. Dissertation, John Hopkins University

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2014R1A2A2A03003874)

Conflict of interest

The authors declare there are no conflicts of interest in this work.

Human and Animal Rights

Human Participants and/or Animals are not involved in this work

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Hoon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.H., Lee, Y.H. Iterative optimization algorithm with parameter estimation for the ambulance location problem. Health Care Manag Sci 19, 362–382 (2016). https://doi.org/10.1007/s10729-015-9332-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10729-015-9332-4

Keywords

Navigation