Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Plant nutrient dynamics: a growing appreciation for the roles of micronutrients

  • Review
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

This article was retracted on 07 December 2023

This article has been updated

Abstract

Micronutrients are essential for plant growth and play a key role in crop nutrition. Micronutrients such as zinc (Zn), iron (Fe), copper (Cu), and manganese (Mn) are necessary for plants and humans who rely on them directly or indirectly. These minerals are important for several important cellular functions, including respiration (Fe and Cu), photosynthesis (Fe, Cu, and Mn), and transcription (Zn). Micronutrient deficiencies have gained importance as a source of ‘hidden hunger,‘ focusing on iron (Fe) and zinc (Zn). Enhancing the nutritional value of staple crops seems to be a simple and effective solution. We address the methods of absorption of numerous beneficial Micronutrients, their positive characteristics, and their involvement in improving crop yield. The importance of biofortification as a procedure to enhance crop yield and as an agricultural solution to solve nutritional security challenges is discussed in this review. Biofortification boosted crop yield to relieve hidden hunger and quality parameters, proving a sustainable and cost-effective strategy. Several novel and targeted biofortification strategies for nutrient enrichment of field crops, including cereals, pulses, oilseeds, and fodder crops, have been reviewed. With the information presented here, researchers can see that biofortification promises to increase agricultural production and provide the crops with additional nutrients to ensure human food security and nutrient quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

“Since it is a review article, no datasets generated during and/or analysed during the current study; all are incorporated in the manuscript.”

Change history

References

  • Al-Babili, S., and Beyer, P. (2005). Golden Rice – five yrs. On the road–five yrs. To go? Trends Plant Sci. 10, 565–573.

    Article  CAS  PubMed  Google Scholar 

  • Aldemir, S., Ates, D., Temel, H. Y., Yagmur, B., Alsaleh, A., Kahriman, A., et al. (2017). QTLs for iron concentration in seeds of the cultivated lentil (Lens culinaris Medic.) Via genotyping by sequencing. Turk J. Agric. 41, 243–255. doi: https://doi.org/10.3906/tar-1610-33

    Article  CAS  Google Scholar 

  • Andresen E, Peiter E, Küpper H. (2018) Trace metal metabolism in plants. Journal of Experimental Botany 69, 909–954.

    Article  CAS  PubMed  Google Scholar 

  • Aslam M, Aslam A, Sheraz M, Ali B, Ulhassan Z, Najeeb U, Zhou W, Gill RA. (2021) Lead toxicity in Cereals: mechanistic insight into toxicity, Mode of Action, and management. Front Plant Sci. 4;11:587785. doi: https://doi.org/10.3389/fpls.2020.587785.

    Article  Google Scholar 

  • Balafrej H, Bogusz D, Triqui ZA, Guedira A, Bendaou N, Smouni A, Fahr M. (2020) Zinc Hyperaccumulation in Plants: A Review. Plants (Basel). 29;9(5):562. doi: https://doi.org/10.3390/plants9050562

  • Bevan, M. W., Uauy, C., Wulff, B. B., Zhou, J., Krasileva, K., and Clark, M. D. (2017). Genomic innovation for crop improvement. Nature 543, 346–354.

    Article  CAS  PubMed  Google Scholar 

  • Bhatt, P.; Verma, A.; Verma, S.; Anwar, M.S.; Prasher, P.; Mudila, H.; Chen, S. (2020) Understanding phytomicrobiome: a potential reservoir for better crop management. Sustainability, 12, 5446.

    Article  CAS  Google Scholar 

  • Bhupalraj, G.; Patnaik, M.C.; Khadke, K.M. (2002) Molybdenum status in soils of Andhra Pradesh. AICRP Micro Second. Nutr. Soils Plants Pradesh, 36, 1–87.

    Google Scholar 

  • Blair, M. W., Astudillo, C., Rengifo, J., Beebe, S. E., and Graham, R. (2011). QTL for seed iron and zinc concentrations in a recombinant inbred line population of Andean common beans (Phaseolus vulgaris L.). Theor. Appl. Genet. 122, 511–523. doi: https://doi.org/10.1007/s00122-010-1465-8

    Article  CAS  PubMed  Google Scholar 

  • Blair, M. W., Knewtson, S. J. B., Astudillo, C., Li, C. M., Fernandez, A. C., and Grusak, M. (2010). Variation and inheritance of iron reductase activity in the roots of common bean (Phaseolus vulgaris L.) and association with seed iron accumulation QTL. BMC Plant Biol. 10:215. doi: https://doi.org/10.1186/1471-2229-10-215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blancquaert D, De Steur H, Gellynck X, Van Der Straeten D. (2017) Metabolic engineering of micronutrients in crop plants. Ann N Y Acad Sci. 1390(1):59–73. doi: https://doi.org/10.1111/nyas.13274.

    Article  PubMed  Google Scholar 

  • Bünemann, E. K., Bongiorno, G., Bai, Z. G., Creamer, R. E., De Deyn, G., de Goede, R., et al. (2018). Soil quality-a critical review. Soil Biol. Biochem. 120, 105–125. doi: https://doi.org/10.1016/j.soilbio.2018.01.030

    Article  CAS  Google Scholar 

  • Bonfim, K., Faria, J. C., Nogueira, E. O., Mendes, E. A., and Aragão, F. J. (2007). RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol. Plant Microbe Interact. 20, 717–726. doi: https://doi.org/10.1094/mpmi-20-6-0717

    Article  CAS  Google Scholar 

  • Bouis, H. E. (2003). Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proc. Nutr. Soc. 62, 403–411. doi: https://doi.org/10.1079/pns2003262

  • Bouis, H. E., and Welch, R. M. (2010). Biofortification - A sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci. 50, S20–S32.

    Article  Google Scholar 

  • Braun DM, Wang L, Ruan YL (2014) Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. J Exp Bot 65:1713–1735. https://doi.org/10.1093/jxb/ert416

  • Brevik, E.C.; Slaughter, L.; Singh, B.R.; Steffan, J.J.; Collier, D.; Barnhart, P.; Pereira, P. (2020) Soil and human health: current status and future needs. Air Soil Water Res., 13, 1–23.

    Article  Google Scholar 

  • Briat JF, Dubos C, Gaymard F (2015 Jan) Iron nutrition, biomass production, and plant product quality. Trends Plant Sci 20(1):33–40. https://doi.org/10.1016/j.tplants.2014.07.005. Epub 2014 Aug 18. PMID: 25153038.

  • Brueck, H.; Lammel, J. (2016) Impact of fertilizer N application on the grey water footprint of winter wheat in a NW-European temperate climate. Water, 8, 356.

    Article  Google Scholar 

  • Cakmak, I.; Kutman, U.B. (2017) Agronomic biofortification of cereals with zinc: a review. Eur. J. Soil Sci. 69, 172–180.

    Article  Google Scholar 

  • Cakmak I, Pfeiffer WH, McClafferty B. (2010) Biofortification of durum wheat with zinc and iron. Cereal Chemistry Journal 87, 10–20.

    Article  CAS  Google Scholar 

  • Callens, T.; del Castello, R.; Baratelli, M.; Xipsiti, M.; Navarro, D.K. (2019) The International Year of Pulses; Final Report; FAO: Rome, Italy, p. 40.

  • Caproni, L., Raggi, L., Talsma, E. F., Wenzl, P., and Negri, V. (2020). European landrace diversity for common bean biofortification: a genome-wide association study. Sci. Rep. 10:19775. doi: https://doi.org/10.1038/s41598-020-76417-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casañas, F., Pérez-Vega, E., Almirall, A., Plans, M., Sabaté, J., and Ferreira, J. J. (2013). Mapping of QTL associated with seed chemical content in a RIL population of common bean (Phaseolus vulgaris L.). Euphytica 192, 279–288. doi: https://doi.org/10.1007/s10681-013-0880-8

    Article  CAS  Google Scholar 

  • Chaiwong, N., Bouain, N., Prom-u-thai, C., and Rouached, H. (2020) Interplay between silicon and iron signalling pathways to regulate silicon transporter Lsi1 expression in rice. Front. Plant Sci. 11:1065. doi: https://doi.org/10.3389/fpls.2020.01065

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Soulay F, Saudemont B, Elmayan T, Marmagne A, Masclaux-Daubresse C. (2019) Overexpression of ATG8 in Arabidopsis stimulates autophagic activity and increases nitrogen remobilization efficiency and grain filling. Plant and Cell Physiology 60, 343–352.

    Article  CAS  PubMed  Google Scholar 

  • Clemens S. (2019) Metal ligands in micronutrient acquisition and homeostasis. Plant, Cell & Environment 42, 2902–29

    Article  CAS  Google Scholar 

  • Cogger, C.; Brown, S. (2016) Soil formation and nutrient cycling. In Sowing Seeds in the City; Brown, S., McIvor, K., Hodges, S.E., Eds.; Springer: Dordrecht, The Netherlands.

    Google Scholar 

  • Connorton, J.M.; Balk, J. (2019) Iron biofortification of staple crops: Lessons and challenges in plant genetics. Plant Cell Physiol. 60, 1447–1456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connorton JM, Balk J, Rodríguez-Celma J. (2017) Iron homeostasis in plants – a brief overview. Metallomics 9, 813–823.

    Article  CAS  PubMed  Google Scholar 

  • Davuluri, G. R., van Tuinen, A., Fraser, P. D., Manfredonia, A., Newman, R., Burgess, D., et al. (2005). Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat. Biotechnol. 23, 890–895. doi: https://doi.org/10.1038/nbt1108

    Article  CAS  PubMed  Google Scholar 

  • De Moura, F. F., Palmer, A. C., Finkelstein, J. L., Haas, J. D., Murray-Kolb, L. E., and Wenger, M. J. (2014). Are biofortified staple food crops improving vitamin a and iron status in women and children? New evidence from efficacy trials. Adv. Nutr. 5, 568–570. doi: https://doi.org/10.3945/an.114.006627

    Article  PubMed  PubMed Central  Google Scholar 

  • Diapari, M., Sindhu, A., Bett, K., Deokar, A., Warkentin, T. D., and Tar’an, B. (2014). Genetic diversity and association mapping of iron and zinc concentrations in chickpea (Cicer arietinum L.). Genome 57, 459–468. doi: https://doi.org/10.1139/gen-2014-0108

    Article  CAS  PubMed  Google Scholar 

  • Dodo, H. W., Konan, K. N., Chen, F. C., Egnin, M., and Viquez, O. M. (2008). Alleviating peanut allergy using genetic engineering: the silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergenicity. Plant Biotechnol. J. 6, 135–145. doi: https://doi.org/10.1111/j.1467-7652.2007.00292.x

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Piñeros MA, Li X, Yang H, Liu Y, Murphy AS, Kochian LV, Liu D. (2017) An Arabidopsis ABC transporter mediates phosphate deficiency-induced remodeling of root architecture by modulating iron homeostasis in roots. Molecular Plant 10, 244–259.

    Article  CAS  PubMed  Google Scholar 

  • Fendrihan, S.; Pop, C.E. (2021) Biotechnological potential of associated microorganism. Rom. Biotechnol. Lett., 26, 2700–2706.

    Article  CAS  Google Scholar 

  • Finkelstein, J. L., Haas, J. D., and Mehta, S. (2017). Iron-biofortified staple food crops for improving iron status: a review of the current evidence. Curr. Opin. Biotechnol. 44, 138–145. doi: https://doi.org/10.1016/j.copbio.2017.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flis P, Ouerdane L, Grillet L, Curie C, Mari S, Lobinski R. (2016) Inventory of metal complexes circulating in plant fluids: a reliable method based on HPLC coupled with dual elemental and high-resolution molecular mass spectrometric detection. New Phytologist 211, 1129–1141.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Casal, M. N., Peña-Rosas, J. P., Giyose, B., De Steur, H., and Van Der Straeten, D. (2017). Staple crops biofortified with increased vitamins and minerals: considerations for a public health strategy. Ann. N.Y. Acad. Sci. 1379, 38–47.

    Google Scholar 

  • Ghandilyan, A., Barboza, L., Tisné, S., Granier, C., Reymond, M., Koornneef, M., et al. (2009). Genetic analysis identifies quantitative trait loci controlling rosette mineral concentrations in Arabidopsis thaliana under drought. New Phytol. 184, 180–192. doi: https://doi.org/10.1111/j.1469-8137.2009.02953.x

    Article  CAS  PubMed  Google Scholar 

  • González-Guerrero, M., Escudero, V., Saéz, Á, and Tejada-Jiménez, M. (2016) Transition metal transport in plants and associated endosymbionts: arbuscular mycorrhizal fungi and rhizobia. Front. Plant Sci. 7:1088.

    Google Scholar 

  • Grillet L, Ouerdane L, Flis P, Hoang MTT, Isaure M-P, Lobinski R, Curie C, Mari S. (2014) Ascorbate efflux as a new strategy for iron reduction and transport in plants. Journal of Biological Chemistry 289, 2515–2525.

    Article  CAS  PubMed  Google Scholar 

  • Górniak, W.; Cholewińska, P.; Konkol, D. (2018) Feed additives produced on the basis of organic forms of micronutrients as a means of biofortification of food of animal origin. J. Chem. 8084127.

  • Gruber, B. D., Giehl, R. F., Friedel, S., and von Wirén, N. (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol. 163, 161–179. doi: https://doi.org/10.1104/pp.113.218453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanikenne M, Esteves SM, Fanara S, Rouached H. (2021) Coordinated homeostasis of essential mineral nutrients: a focus on iron. Journal of Experimental Botany 72, 2136–2153.

    Article  CAS  PubMed  Google Scholar 

  • HarvestPlus Annual Report (2015). HarvestPlus Annual Report. https://www.harvestplus.org/knowledge-market/publications?f%5B0%5D=field_resource_type%3A11

  • Haun, W., Coffman, A., Clasen, B. M., Demorest, Z. L., Lowy, A., Ray, E., et al. (2014). Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol. J. 12, 934–940. doi: https://doi.org/10.1111/pbi.12201

    Article  CAS  PubMed  Google Scholar 

  • Hindt MN, Guerinot ML (2012 Sep) Getting a sense for signals: regulation of the plant iron deficiency response. Biochim Biophys Acta 1823(9):1521–30. https://doi.org/10.1016/j.bbamcr.2012.03.010

  • Huang, S.; Wang, P.; Yamaji, N.; Ma, J.F. (2020) Plant nutrition for human nutrition: hints from rice research and future perspectives. Mol. Plant, 13, 825–835.

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H. (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. PNAS, USA 109, 19166–19171.

  • Jaiswal, D.K., Krishna, R., Chouhan, G.K. et al (2022) Bio-fortification of minerals in crops: current scenario and future prospects for sustainable agriculture and human health. Plant Growth Regul 98, 5–22. https://doi.org/10.1007/s10725-022-00847-4

    Article  CAS  Google Scholar 

  • Jegadeesan, S., Yu, K., Poysa, V., Gawalko, E., Morrison, M. J., Shi, C., et al. (2010). Mapping and validation of simple sequence repeat markers linked to a major gene controlling seed cadmium accumulation in soybean [Glycine max (L.) Merr]. Theor. Appl. Genet. 121, 283–294. doi: https://doi.org/10.1007/s00122-010-1309-6

    Article  CAS  PubMed  Google Scholar 

  • Jeong, J., Merkovich, A., Clyne, M., and Connolly, E. L. (2017) Directing iron transport in dicots: regulation of iron acquisition and translocation. Curr. Opin. Plant Biol. 39, 106–113. doi: https://doi.org/10.1016/j.pbi.2017.06.014

    Article  CAS  PubMed  Google Scholar 

  • Jiang, D., Zhao, L., and Clapham, D. E. (2009). Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2 +/H+ antiporter. Science 326, 144–147. doi: https://doi.org/10.1126/science.1175145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, W., Struik, P. C., van Keulen, H., Zhao, M., Jin, L. N., and Stomph, T. J. (2008). Does increased zinc uptake enhance grain zinc mass concentration in rice? Ann. Appl. Biol. 153, 135–147. doi: https://doi.org/10.1111/j.1744-7348.2008.00243.x

    Article  CAS  Google Scholar 

  • Katuuramu D, Hart J, Porch T, Grusak M, Glahn R, Cichy K (2018) Genome-wide association analysis of nutritional composition-related traits and iron bioavailability in cooked dry beans (Phaseolus vulgaris L.). Mol Breed 38:44. https://doi.org/10.1007/s11032-018-0798-x

  • Kaur, T.; Rana, K.L.; Kour, D.; Sheikh, I.; Yadav, N.; Kumar, V.; Yadav, A.N.; Dhaliwal, H.S.; Saxena, A.K. (2020) Microbe-mediated biofortification for micronutrients: Present status and future challenges. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, pp. 1–17.

    Google Scholar 

  • Kawakami Y, Bhullar NK. (2021) Delineating the future of iron biofortification studies in rice: challenges and future perspectives. Journal of Experimental Botany 72, 2099–2113.

    Article  CAS  PubMed  Google Scholar 

  • Khoshgoftarmanesh, A.H., Schulin, R., Chaney, R.L. et al (2010) Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture. A review. Agron. Sustain. Dev. 30, 83–107. https://doi.org/10.1051/agro/2009017

    Article  CAS  Google Scholar 

  • Kihara, J.; Bolo, P.; Kinyua, M.; Rurinda, J.; Pikki, K. (2020) Micronutrient deficiencies in african soils and the human nutritional nexus: Opportunities with staple crops. Environ. Geochem. Health, 42, 3015–3033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kisko M, Bouain N, Safi A, et al. (2018) LPCAT1 controls phosphate homeostasis in a zinc-dependent manner. eLife 7, e32077.

  • Klikocka H, Marks M. (2018) Sulphur and nitrogen fertilization as a potential means of agronomic biofortification to improve the content and uptake of microelements in spring wheat grain DM. J Chem. 2018:9326820. doi: https://doi.org/10.1155/2018/9326820

  • Kobayashi T, Nozoye T, Nishizawa NK (2019) Iron transport and its regulation in plants. Free Rad Biol Med 133:11–20

    Article  CAS  PubMed  Google Scholar 

  • Kowalska, G.; Kowalski, R.; Hawlena, J.; Rowiński, R. (2020) Seeds of oilseed rape as an alternative source of protein and mineral. J. Elementol., 25, 513–522.

    Google Scholar 

  • Krouk, G., and Kiba, T. (2020) Nitrogen and phosphorus interactions in plants: from agronomic to physiological and molecular insights. Curr. Opin. Plant Biol. 57, 1–6. doi: https://doi.org/10.1016/j.pbi.2020.07.002

    Article  CAS  Google Scholar 

  • Krouk, G., Ruffel, S., Gutiérrez, R. A., Gojon, A., Crawford, N. M., Coruzzi, G. M., et al. (2011) A framework integrating plant growth with hormones and nutrients. Trends Plant Sci. 16, 178–182. doi: https://doi.org/10.1016/j.tplants.2011.02.004

    Article  CAS  PubMed  Google Scholar 

  • Kumar, D.; Dhaliwal, S.S.; Naresh, R.K.; Salaria, A. (2018) Agronomic biofortification of paddy through nitrogen, zinc and iron fertilization: a review. Int. J. Curr. Microbiol. Appl. Sci., 7, 2942–2953.

    Article  Google Scholar 

  • Kusaba, M., Miyahara, K., Iid, S., Fukuoka, H., Takano, T., Sassa, H., et al. (2003). Low glutelin content1: a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. Plant Cell 15, 1455–1467. doi: https://doi.org/10.1105/tpc.011452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutman UB, Yildiz B, Cakmak I. (2011) Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron throughout the development of durum wheat. Plant and Soil 342, 149–164.

    Article  CAS  Google Scholar 

  • Lean, M.E. (2019) Principles of human nutrition. Medicine, 47, 140–144.

    Article  Google Scholar 

  • Lee S, Persson DP, Hansen TH, et al. (2011) Bio-available zinc in rice seeds is increased by activation tagging of nicotianamine synthase: activation and overexpression of OsNAS2. Plant Biotechnology Journal 9, 865–73.

    Article  CAS  PubMed  Google Scholar 

  • Lešková, A.; Giehl, R.F.H.; Hartmann, A.; Fargašová, A.; von Wirén, N. (2017) Heavy metals induce iron deficiency responses at different hierarchic and regulatory levels. Plant Physiol., 174, 1648–1668.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ligowe, I.S.; Bailey, E.H.; Young, S.D.; Ander, E.L.; Kabambe, V.; Chilimba, A.D.; Lark, R.M.; Nalivata, P.C. (2021) Agronomic iodine biofortification of leafy vegetables grown in Vertisols, Oxisols and Alfisols. Environ. Geochem. Health 43, 361–374.

    Article  CAS  PubMed  Google Scholar 

  • Liu, T. Y., Chang, C. Y., and Chiou, T. J. (2009) The long-distance signalling of mineral macronutrients. Curr. Opin. Plant Biol. 12, 312–319. doi: 10.1016/j. pbi.2009.04.00

    Article  CAS  PubMed  Google Scholar 

  • Maghari, B. M., and Ardekani, A. M. (2011). Genetically modified foods and social concerns. Avicenna J. Med. Biotechnol. 3, 109–117.

    PubMed  PubMed Central  Google Scholar 

  • Maillard A, Etienne P, Diquélou S, Trouverie J, Billard V, Yvin J-C, Ourry A. (2016a) Nutrient deficiencies modify the ionomic composition of plant tissues: a focus on cross-talk between molybdenum and other nutrients in Brassica napus. Journal of Experimental Botany 67, 5631–5641.

    Article  CAS  PubMed  Google Scholar 

  • Maillard A, Sorin E, Etienne P, et al. (2016b) Non-specific root transport of nutrient gives access to an early nutritional indicator: the case of sulfate and molybdate. PLoS One 11, e0166910.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mari S, Bailly C, Thomine S. (2020) Handing off iron to the next generation: how does it get into seeds and what for? Biochemical Journal 477, 259–274.

    Article  CAS  PubMed  Google Scholar 

  • Marschner P, ed. (2012) Marschner’s mineral nutrition of higher plants, 3rd edn. London: Elsevier/Academic Press

  • Ma X, Geng Q, Zhang H, Bian C, Chen HYH, Jiang D, Xu X. (2021) Global negative effects of nutrient enrichment on arbuscular mycorrhizal fungi, plant diversity and ecosystem multifunctionality. New Phytologist 229, 2957–2969.

    Article  CAS  PubMed  Google Scholar 

  • Michno, J. M., Wang, X., Liu, J., Curtin, S. J., Kono, T. J., and Stupar, R. M. (2015). CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food 6, 243–252. doi: https://doi.org/10.1080/21645698.2015.1106063

    Article  PubMed  PubMed Central  Google Scholar 

  • Morales F, Ancín M, Fakhet D, González-Torralba J, Gámez AL, Seminario A, Soba D, Ben Mariem S, Garriga M, Aranjuelo I. (2020) Photosynthetic Metabolism under Stressful Growth Conditions as a Bases for Crop Breeding and Yield Improvement. Plants (Basel). 10;9(1):88. doi: https://doi.org/10.3390/plants9010088.

  • Morales, F.; Pavlovic, A.; Abadía, A.; Abadía, J. (2018) Photosynthesis in poor nutrient soils, in compacted soils, and under drought. In The Leaf: a platform for performing photosynthesis; Adams, W.W., III, Terashima, I., Eds.; Springer: Berlin/Heidelberg, Germany, pp. 371–399.

    Chapter  Google Scholar 

  • Murgia I, De Gara L, Grusak MA. (2013) Biofortification: how can we exploit plant science and biotechnology to reduce micronutrient deficiencies? Front Plant Sci. 6;4:429. doi: https://doi.org/10.3389/fpls.2013.00429.

    Article  Google Scholar 

  • Mu S, Yamaji N, Sasaki A, et al. (2021) A transporter for delivering zinc to the developing tiller bud and panicle in rice. The Plant Journal 105, 786–799.

    Article  CAS  PubMed  Google Scholar 

  • Norton, G. J., Deacon, C. M., Xion, L., Huang, S., Meharg, A. A., and Price, A. H. (2010). Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil 329, 139–153. doi: https://doi.org/10.1007/s11104-009-0141-8

    Article  CAS  Google Scholar 

  • Nuss, E.T.; Tanumihardjo, S.A. (2010) Maize: a paramount staple crop in the context of global nutrition. Food Soc. Food Saf., 9, 417–436.

    Article  CAS  Google Scholar 

  • Olsen LI, Hansen TH, Larue C, et al. (2016) Mother-plant-mediated pumping of zinc into the developing seed. Nature Plants 2, 16036.

    Article  CAS  PubMed  Google Scholar 

  • Olsen LI, Palmgren MG. (2014) Many rivers to cross: the journey of zinc from soil to seed. Frontiers in Plant Science 5, 30

    Article  PubMed  PubMed Central  Google Scholar 

  • Peltier, A. J., Hatfield, R. D., and Grau, C. R. (2009). Soybean stem lignin concentration relates to resistance to Sclerotinia sclerotiorum. Plant Dis. 93, 149–154. doi: https://doi.org/10.1094/pdis-93-2-0149

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009 Jun) Physiological functions of beneficial elements. Curr Opin Plant Biol 12(3):267–74. https://doi.org/10.1016/j.pbi.2009.04.009.

  • Piotrowska-Dlugosz, A.; Siwik-Ziomek, A.; Dlugosz, J.; Gozdowski, D. (2017) Spatio-temporal variability of soil sulfur content and arylsulfatase activity at a conventionally managed arable field. Geoderma, 295, 107–118.

    Article  CAS  Google Scholar 

  • Pixley, K. V., Palacios-Rojas, N., and Glahn, R. P. (2011). The usefulness of iron bioavailability as a target trait for breeding maize (Zea mays L.) with enhanced nutritional value. Field Crops Res. 123, 153–160. doi: https://doi.org/10.1016/j.fcr.2011.05.011

    Article  Google Scholar 

  • Pottier M, Dumont J, Masclaux-Daubresse C, Thomine S. (2019) Autophagy is essential for optimal translocation of iron to seeds in Arabidopsis. Journal of Experimental Botany 70, 859–869.

    CAS  PubMed  Google Scholar 

  • Pottier M, Oomen R, Picco C, Giraudat J, Scholz-Starke J, Richaud P, Carpaneto A, Thomine S. (2015) Identification of mutations allowing Natural Resistance Associated Macrophage Proteins (NRAMP) to discriminate against cadmium. The Plant Journal 83, 625–637

    Article  CAS  PubMed  Google Scholar 

  • Praharaj S, Skalicky M, Maitra S, Bhadra P, Shankar T, Brestic M, Hejnak V, Vachova P, Hossain A. (2021) Zinc Biofortification in Food Crops Could Alleviate the Zinc Malnutrition in Human Health. Molecules. 9;26(12):3509. doi: https://doi.org/10.3390/molecules26123509.

  • Raffa CM, Chiampo F, Shanthakumar S. (2021) Remediation of Metal/Metalloid-Polluted soils: a short review. Applied Sciences. 11(9):4134. https://doi.org/10.3390/app11094134

    Article  CAS  Google Scholar 

  • Ramamurthy, R. K., Jedlicka, J., Graef, G. L., and Waters, B. M. (2014). Identification of new QTLs for seed mineral, cysteine, and methionine concentrations in soybean [Glycine max (L.) Merr.]. Mol. Breed. 34, 431–445. doi: https://doi.org/10.1007/s11032-014-0045-z

    Article  CAS  Google Scholar 

  • Raman, R. (2017). The impact of genetically modified (GM) crops in modern agriculture: a review. GM Crops Food. 8, 195–208. doi: https://doi.org/10.1080/21645698.2017. 1413522

    Article  PubMed  PubMed Central  Google Scholar 

  • Rebello, C.J.; Greenway, F.L.; Finley, J.W. (2014) Whole grains and pulses: a comparison of the nutritional and health benefits. J Agric. Food Chem., 62, 7029–7049.

    Article  CAS  PubMed  Google Scholar 

  • Roorkiwal, M., Bharadwaj, C., Barmukh, R., Dixit, G. P., Thudi, M., Gaur, P. M., et al. (2020). Integrating genomics for chickpea improvement: achievements and opportunities. Theor. Appl. Genet 133, 1703–1720. doi: https://doi.org/10.1007/s00122-020-03584-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosa-Sibakov, N.; Poutanen, K.; Micard, V. (2015) How does wheat grain, bran and aleurone structure impact their nutritional and technological properties? Trends Food Sci. Technol., 41, 118–134.

    Article  CAS  Google Scholar 

  • Sab, S., Lokesha, R., Mannur, D. M., Somasekhar, Jadhav, K., Mallikarjuna, B. P., et al. (2020). Genome wide SNP discovery and mapping QTLs for seed iron and zinc concentrations in chickpea (Cicer arietinum L.). Front. Nutr. 7:559120. doi: https://doi.org/10.3389/fnut.2020.559120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saeid, A.; Patel, A.; Jastrzębska, M.; Korczyński, M. (2019) Food biofortification. J. Chem. 5718426.

  • Saini RK, Nile SH, Keum Y-S (2016) Food science and technology for management of iron defciency in humans: a review. Trends Food Sci Technol 53:13–22

    Article  CAS  Google Scholar 

  • Saltzman, A., Birol, E., Oparinde, A., Andersson, M. S., Asare-Marfo, D., Diressie, M. T., et al. (2017). Availability, production, and consumption of crops biofortified by plant breeding: current evidence and future potential. Ann. N. Y. Acad. Sci. 1390, 104–114. doi: https://doi.org/10.1111/nyas.13314

    Article  PubMed  Google Scholar 

  • Senovilla M, Abreu I, Escudero V, Cano C, Bago A, Imperial J, González-Guerrero M. (2020) MtCOPT2 is a Cu+ transporter specifically expressed in Medicago truncatula mycorrhizal roots. Mycorrhiza 30, 781–788.

    Article  CAS  PubMed  Google Scholar 

  • Shahzad R, Jamil S, Ahmad S, Nisar A, Khan S, Amina Z, Kanwal S, Aslam HMU, Gill RA, Zhou W. (2021) Biofortification of Cereals and Pulses using new breeding techniques: current and future perspectives. Front Nutr. 7;8:721728. doi: https://doi.org/10.3389/fnut.2021.721728.

    Article  CAS  Google Scholar 

  • Shao JF, Yamaji N, Liu XW, Yokosho K, Shen RF, Ma JF. (2018) Preferential distribution of boron to developing tissues is mediated by the intrinsic protein OsNIP3. Plant Physiology 176, 1739–1750.

    Article  CAS  PubMed  Google Scholar 

  • Shelef, O., Weisberg, P. J., & Provenza, F. D. (2017). The Value of Native Plants and Local Production in an Era of Global Agriculture. Frontiers in plant science, 8, 2069. https://doi.org/10.3389/fpls.2017.02069

  • Sheraz S, Wan Y, Venter E, Verma SK, Xiong Q, Waites J, Connorton JM, Shewry PR, Moore KL, Balk J. (2021) Subcellular dynamics studies of iron reveal how tissue-specific distribution patterns are established in developing wheat grains. New Phytologist 231, 1644–1657.

    Article  CAS  PubMed  Google Scholar 

  • Shukla, A.K.; Behera, S.K.; Pakhre, A.; Chaudhari, S.K. (2018) Micronutrients in soils, plants, animals and humans. Indian J. Fert. 14, 30–54.

    Google Scholar 

  • Shukla AK, Behera SK, Prakash C, Patra AK, Rao CS, Chaudhari SK, Das S, Singh AK, Green A. (2021) Assessing Multi-Micronutrients Deficiency in Agricultural Soils of India. Sustainability. 13(16):9136. https://doi.org/10.3390/su13169136

    Article  CAS  Google Scholar 

  • Shukla, A.K.; Behera, S.K.; Satyanarayana, T.; Majumdar, K. (2019) Importance of micronutrients in indian agriculture. Better Crops South Asia, 11, 6–10.

    Google Scholar 

  • Singh AP, Singh MV, Sakal R, Chaudhary VC (2006) Boron nutrition of crops and soils of Bihar. Tech Bull 6:1–80.

  • Singh, B.R.; Timsina, Y.N.; Lind, O.C.; Cagno, S.; Janssens, K. (2018) Zinc and iron concentration as affected by nitrogen fertilization and their localization in wheat grain. Front. Plant Sci., 9, 307.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh, D.; Rajawat, M.V.S.; Kaushik, R. (2017) Beneficial role of endophytes in biofortification of Zn in wheat genotypes varying in nutrient use efficiency grown in soils sufficient and deficient in Zn. Plant Soil, 416, 107–116.

    Article  CAS  Google Scholar 

  • Singh, M.V. (2001) Evaluation of micronutrient status in different agroecological zones of India. Fertil. News, 46, 25–42.

    CAS  Google Scholar 

  • Sperotto, R. A., Ricachenevsky, F. K., Williams, L. E., Vasconcelos, M. W., and Menguer, P. K. (2014) From soil to seed: micronutrient movement into and within the plant. Front. Plant Sci. 5:438.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanton C, Sanders D, Krämer U, Podar D. (2021) Zinc in plants: integrating homeostasis and biofortification. Molecular Plant 15, 65–85.

    Article  PubMed  Google Scholar 

  • Steur, H.D.; Mehta, S.; Gellynck, X.; Finkelstein, J.L. (2017) GM biofortified crops: potential effects on targeting the micronutrient intake gap in human populations. Curr. Opin. Biotechnol. 44, 181–188.

    Article  PubMed  Google Scholar 

  • Stoyanova, Z. and Doncheva S. (2002) The effect of zinc supply and succinate treatment on plant growth and mineral uptake in pea plant. Brazilian Journal of Plant Physiology. 14:111–116. DOI: https://doi.org/10.1590/S1677-04202002000200005.

    Article  CAS  Google Scholar 

  • Stringlis IA, Yu K, Feussner K, de Jonge R, Van Bentum S, Van Verk MC, Berendsen RL, Bakker PAHM, Feussner I, Pieterse CMJ. (2018) MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proceedings of the National Academy of Sciences, USA 115, E5213–E5222.

  • Száková, J.; Praus, L.; Tremlová, J.; Kulhánek, M.; Tlustoš, P. (2017) Efficiency of foliar selenium application on oilseed rape (Brassica napus L.) as influenced by rainfall and soil characteristics. Arch. Agron. Soil Sci., 63, 1240–1254.

    Article  Google Scholar 

  • Tang, F., Yang, S., Liu, J., and Zhu, H. (2016). Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin-like protein but not the one previously reported. Plant Physiol. 170, 26–32. doi: https://doi.org/10.1104/pp.15.01661

    Article  CAS  PubMed  Google Scholar 

  • Tang, G., and Galili, G. (2004). Using RNAi to improve plant nutritional value: from mechanism to application. Trends Biotechnol. 22, 463–469. doi: 10.1016/ j.tibtech.2004.07.009

    Article  CAS  PubMed  Google Scholar 

  • Tsai HH, Schmidt W. (2017) Mobilization of iron by plant-borne coumarins. Trends in Plant Science 22, 538–548.

    Article  CAS  PubMed  Google Scholar 

  • Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF. (2010) Gene limiting cadmium accumulation in rice. Proceedings of the National Academy of Sciences, USA 107, 16500–16505.

  • Varshney, R. K., Thudi, M., Pandey, M. K., Tardieu, F., Ojiewo, C., Vadez, V., et al. (2018). Accelerating genetic gains in legumes for the development of prosperous smallholder agriculture: integrating genomics, phenotyping, systems modelling and agronomy. J. Exp. Bot. 69, 3293–3312. doi: 10.1093/ jxb/ery088

    Article  CAS  PubMed  Google Scholar 

  • Velu, G., Singh, R. P., Huerta-Espino, J., Peña, R. J., Arun, B., Mahendru-Singh, A., et al. (2012). Performance of biofortified spring wheat genotypes in target environments for grain zinc and iron concentrations. Field Crops Res. 137, 261–267. doi: https://doi.org/10.1016/j.fcr.2012.07.018

    Article  Google Scholar 

  • Venkidasamy, B.; Selvaraj, D.; Nile, A.S.; Ramalingam, S.; Kai, G.; Nile, S.H. (2019) Indian pulses: a review on nutritional, functional and biochemical properties with future perspectives. Trends Food Sci. Technol., 88, 228–242.

    Article  CAS  Google Scholar 

  • Waters BM, Sankaran RP. Moving micronutrients from the soil to the seeds: genes and physiological processes from a biofortification perspective. Plant Sci. 2011 Apr;180(4):562–74. doi: https://doi.org/10.1016/j.plantsci.2010.12.003.

    Article  CAS  PubMed  Google Scholar 

  • Watts-Williams, S.J.; Cavagnaro, T.R. (2018) Arbuscular mycorrhizal fungi increase grain zinc concentration and modify the expression of root ZIP transporter genes in a modern barley (Hordeum vulgare) cultivar. Plant Sci., 274, 163–170.

    Article  CAS  PubMed  Google Scholar 

  • Watts-Williams SJ, Smith FA, McLaughlin MJ, Patti AF, Cavagnaro TR. (2015) How important is the mycorrhizal pathway for plant zn uptake? Plant and Soil 390, 157–166.

    Article  CAS  Google Scholar 

  • Wawrzyńska, A., and Sirko, A. (2014) To control and to be controlled: understanding the Arabidopsis SLIM1 function in sulphur deficiency through comprehensive investigation of the EIL protein family. Front. Plant Sci. 5:575. doi: https://doi.org/10.3389/fpls.2014.00575

    Article  Google Scholar 

  • Xue, Y., Xia, H., Christie, P., Zhang, Z., Li, L., and Tang, C. (2016) Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review. Ann. Bot. 117, 363–377. doi: https://doi.org/10.1093/aob/mcv182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav, R.; Ror, P.; Rathore, P.; Ramakrishna, W. (2020) Bacteria from native soil in combination with arbuscular mycorrhizal fungi augment wheat yield and biofortification. Plant Physiol. Biochem., 150, 222–233.

    Article  CAS  PubMed  Google Scholar 

  • Yazici MA, Asif M, Tutus Y, Ortas I, Ozturk L, Lambers H, Cakmak I. (2021) Reduced root mycorrhizal colonization as affected by phosphorus fertilization is responsible for high cadmium accumulation in wheat. Plant and Soil 468, 19–35.

    Article  CAS  Google Scholar 

  • Zafar, S.; Li, Y.L.; Li, N.N.; Zhu, K.M.; Tan, X.L. (2019) Recent advances in enhancement of oil content in oilseed crops. J. Biotechnol., 301, 35–44.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B., Chen, P., Shi, A., Hou, A., Ishibashi, T., and Wang, D. (2009). Putative quantitative trait loci associated with calcium content in soybean seed. J. Hered. 100, 263–262. doi: https://doi.org/10.1093/jhered/esn096

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhu Y, Yu L, Yang M, Zou X, Yin C, Lin Y. (2022) Research Advances in Cadmium Uptake, Transport and Resistance in Rice (Oryza sativa L.). Cells. 6;11(3):569. doi: https://doi.org/10.3390/cells11030569.

  • Zhao, K., and Wu, Y. (2017) Effects of Zn deficiency and bicarbonate on the growth and photosynthetic characteristics of four plant species. PLoS One 12:e0169812. doi: https://doi.org/10.1371/journal.pone.0189620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

“The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.”

Author information

Authors and Affiliations

Authors

Contributions

“All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Sayanti Mandal, Santosh Kumar Gupta, Mimosa Ghorai, Uttpal Anand and Samapika Nandy. The first draft of the manuscript was written by Protha Biswas, Manoj Tukaram Patil, Manoj Kumar, Radha and Abilash Valsala Gopalakrishnan. Figures were prepared by Md. Habibur Rahman, Dorairaj Arvind Prasanth, Abhijit Bhagwan Mane, Niraj Kumar Jha and Saurabh Kumar Jha. Tables were prepared and the primary draft was revised by Milan Kumar Lal and Rahul Kumar Tiwari. The conceptualization, guidance and resources were provided by Abhijit Dey. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.”

Corresponding author

Correspondence to Abhijit Dey.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Marian Brestic.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s10725-023-01102-0

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Gupta, S.K., Ghorai, M. et al. RETRACTED ARTICLE: Plant nutrient dynamics: a growing appreciation for the roles of micronutrients. Plant Growth Regul 100, 435–452 (2023). https://doi.org/10.1007/s10725-023-01006-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-023-01006-z

Keywords

Navigation