Skip to main content

Advertisement

Log in

Seed priming: an emerging tool towards sustainable agriculture

  • Review Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Seed germination is one of the most crucial and complex physiological phenomena in the lifecycle of a plant, which often falls prey to environmental and biological stress that leads to erratic germination. Priming is a traditional method, generally used for synchronized seedling growth and stable crop stand, but priming has emerged as a potent tool for sustainable agriculture in recent times. It is used to tide over many abiotic stresses, such as salinity, drought, cold, heavy metal stresses, and also escalate the growth of the crop plants. Priming is even found to be beneficial against biotic stress agents like pathogenic bacteria and fungi. In this review, we have tried to summarize different successful reports of priming that had brought remarkable results in terms of growth, yield, disease resistance, abiotic and biotic stress tolerance. It also identifies the subcellular changes induced by priming highlighting the molecular and physiological aspects. The specific proteomic changes during imbibition and seed dehydration processes associated with a priming that helps in uplifting the seed vigor are also summarized. In the wake of the soaring demand of the food supply due to continuous surge in population and excessive use of chemical fertilizers to achieve higher yield, soil health is compromised. As an alternative, seed priming can serve as a cost-effective, environment-friendly, and pragmatic approach to address global food security through sustainable agricultural innovation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Afrin S, Tahjib-Ul-Arif M, Sakil M, Sohag A, Polash M, Hossain M (2019) Hydrogen peroxide priming alleviates chilling stress in rice (Oryza sativa L.) by enhancing oxidant scavenging capacity. Fundam Appl Agric 4(1):713–722

    Google Scholar 

  • Ahuja R, Sidhu A, Bala A (2019) Synthesis and evaluation of iron(II) sulfide aqua nanoparticles (FeS-NPs) against Fusarium verticillioides causing sheath rot and seed discoloration of rice. Eur J Plant Pathol 155(1):163–171

    Article  CAS  Google Scholar 

  • Alvarado AD, Bradford KJ (1988) Priming and storage of tomato (Lycopersicon lycopersicum) seeds. I. Effects of storage temperature on germination rate and viability. Seed Sci Technol 16(3):601–612

    Google Scholar 

  • Amruta N, Kumar MP, Kandikattu HK, Sarika G, Puneeth ME, Ranjitha HP, Vishwanath K, Manjunatha C, Pramesh D, Mahesh HB, Narayanaswamy S (2019) Bio-priming of rice seeds with novel bacterial strains, for management of seedborne Magnaporthe oryzae L. Plant Physiol Rep 24(4):507–520

    Article  CAS  Google Scholar 

  • Anand KV, Anugraga AR, Kannan M, Singaravelu G, Govindaraju K (2020) Bio-engineered magnesium oxide nanoparticles as nano-priming agent for enhancing seed germination and seedling vigour of green gram (Vigna radiata L.). Mater Lett 271:127792

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2005) Pre-sowing seed treatment—a shotgun approach to improve germination, plant growth, and crop yield under saline and non‐saline conditions. Adv Agron 88:223–271

    Article  Google Scholar 

  • Assmann SM (2002) Heterotrimeric and unconventional GTP binding proteins in plant cell signaling. Plant Cell 14(Suppl 1):S355–S373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahuguna RN, Joshi R, Shukla A, Pandey M, Kumar J (2012) Thiamine primed defense provides reliable alternative to systemic fungicide carbendazim against sheath blight disease in rice (Oryza sativa L.). Plant Physiol Biochem 57:159–167

    Article  CAS  PubMed  Google Scholar 

  • Bai X, Yang L, Yang Y, Ahmad P, Yang Y, Hu X (2011) Deciphering the protective role of nitric oxide against salt stress at the physiological and proteomic levels in maize. J Proteome Res 10(10):4349–4364

    Article  CAS  PubMed  Google Scholar 

  • Balmer A, Pastor V, Gamir J, Flors V, Mauch-Mani B (2015) The ‘prime-ome’: towards a holistic approach to priming. Trends Plant Sci 20(7):443–452

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Roychoudhury A (2020) Gibberellic acid-priming promotes fluoride tolerance in a susceptible Indica rice cultivar by regulating the antioxidant and phytohormone homeostasis. J Plant Growth Regul 7:1–2

    Google Scholar 

  • Basra SMA, Ullah E, Warriach A, Cheema MA, Afzal I (2003) Effect of storage on growth and yield of primed canola (Brassica napus) seeds. Int J Agric Biol 5(2):117–120

    Google Scholar 

  • Basra SMA, Farooq M, Wahid A, Khan MB (2006) Rice seed invigoration by hormonal and vitamin priming. Seed Sci Technol 34(3):753–758

    Article  Google Scholar 

  • Battaglia M, Covarrubias AA (2013) Late embryogenesis abundant (LEA) proteins in legumes. Front Plant Sci 4:190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becerra-Vázquez ÁG, Coates R, Sánchez-Nieto S, Reyes-Chilpa R, Orozco-Segovia A (2020) Effects of seed priming on germination and seedling growth of desiccation-sensitive seeds from Mexican tropical rainforest. J Plant Res 133(6):855–872

    Article  PubMed  Google Scholar 

  • Beckers GJ, Jaskiewicz M, Liu Y, Underwood WR, He SY, Zhang S, Conrath U (2009) Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21(3):944–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berjak P, Pammenter NW (2002) Orthodox and recalcitrant seeds. In: Tropical tree seed handbook. USDA, pp 137–147

  • Berjak P, Pammenter N (2013) Implications of the lack of desiccation tolerance in recalcitrant seeds. Front Plant Sci 4:478

    Article  PubMed  PubMed Central  Google Scholar 

  • Castro-Colina L, Martínez-Ramos M, Sánchez-Coronado ME, Huante P, Mendoza A, Orozco-Segovia A (2012) Effect of hydropriming and acclimation treatments on Quercus rugosa acorns and seedlings. Eur J For Res 131(3):747–756

    Article  Google Scholar 

  • Chen CC, Sung JM (2001) Priming bitter gourd seeds with selenium solution enhances germinability and antioxidative responses under sub-optimal temperature. Physiol Plant 111(1):9–16

    Article  CAS  Google Scholar 

  • Chen K, Fessehaie A, Arora R (2012) Dehydrin metabolism is altered during seed osmopriming and subsequent germination under chilling and desiccation in Spinacia oleracea L. cv. Bloomsdale: possible role in stress tolerance. Plant Sci 183:27–36

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Fessehaie A, Arora R (2013) Aquaporin expression during seed osmopriming and post-priming germination in spinach. Biol Plant 57(1):193–198

    Article  CAS  Google Scholar 

  • Chen X, Zhang R, Xing Y, Jiang B, Li B, Xu X, Zhou Y (2021) The efficacy of different seed priming agents for promoting sorghum germination under salt stress. PLoS ONE 16(1):e0245505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng J, Wang L, Zeng P, He Y, Zhou R, Zhang H, Wang Z (2017) Identification of genes involved in rice seed priming in the early imbibition stage. Plant Biol 19(1):61–69

    Article  CAS  PubMed  Google Scholar 

  • Chunthaburee S, Sanitchon J, Pattanagul W, Theerakulpisut P (2014) Alleviation of salt stress in seedlings of black glutinous rice by seed priming with spermidine and gibberellic acid. Not Bot Horti Agrobot Cluj-Napoca 42(2):405–413

    Article  CAS  Google Scholar 

  • Conrath U (2011) Molecular aspects of defence priming. Trends Plant Sci 16(10):524–531

    Article  CAS  PubMed  Google Scholar 

  • Dabral S, Varma A, Choudhary DK, Bahuguna RN, Nath M (2019) Biopriming with Piriformospora indica ameliorates cadmium stress in rice by lowering oxidative stress and cell death in root cells. Ecotoxicol Environ Saf 186:109741

    Article  CAS  PubMed  Google Scholar 

  • de Castro RD, van Lammeren AA, Groot SP, Bino RJ, Hilhorst HW (2000) Cell division and subsequent radicle protrusion in tomato seeds are inhibited by osmotic stress but DNA synthesis and formation of microtubular cytoskeleton are not. Plant Physiol 122(2):327–336

    Article  PubMed  PubMed Central  Google Scholar 

  • Devi KS, Devi PS, Sinha B, Singh LN, Chanu WT, Maibam N, Devi HC (2019) Effects of bio priming of rice seeds with native Trichoderma spp. isolated from rice rhizospheric soil. J Pharmacogn Phytochem 8(4):1968–1971

    Google Scholar 

  • Devoto A, Piffanelli P, Nilsson I, Wallin E, Panstruga R, von Heijne G, Schulze-Lefert P (1999) Topology, subcellular localization, and sequence diversity of the Mlo family in plants. J Biol Chem 274(49):34993–35004

    Article  CAS  PubMed  Google Scholar 

  • Dey S, Kundu R, Gopal G, Mukherjee A, Nag A, Paul S (2019) Enhancement of nitrogen assimilation and photosynthetic efficiency by novel iron pulsing technique in Oryza sativa L. var Pankaj. Plant Physiol Biochem 144:207–221

    Article  CAS  PubMed  Google Scholar 

  • Dey S, Paul S, Nag A, Banerjee R, Gopal G, Mukherjee A, Kundu R (2021) Iron-pulsing, a novel seed invigoration technique to enhance crop yield in rice: a journey from lab to field aiming towards sustainable agriculture. Sci Total Environ 769:144671

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Vivancos P, Barba-Espín G, Hernández JA (2013) Elucidating hormonal/ROS networks during seed germination: insights and perspectives. Plant Cell Rep 32(10):1491–1502

    Article  CAS  PubMed  Google Scholar 

  • Dietz KJ, Mittler R, Noctor G (2016) Recent progress in understanding the role of reactive oxygen species in plant cell signaling. Plant Physiol 171(3):1535–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du B, Luo H, He L, Zhang L, Liu Y, Mo Z, Pan S, Tian H, Duan M, Tang X (2019) Rice seed priming with sodium selenate: effects on germination, seedling growth, and biochemical attributes. Sci Rep 9(1):1–9

    Article  Google Scholar 

  • Dutta SK, Layek J, Akoijam RS, Boopathi T, Saha S, Singh SB, Prakash N (2019) Seaweed extract as natural priming agent for augmenting seed quality traits and yield in Capsicum frutescens L. J Appl Phycol 31(6):3803–3813

    Article  CAS  Google Scholar 

  • Farooq M, Basra SMA, Hafeez K, Asad SA, Ahmad N (2005) Use of commercial fertilizers as osmotica for rice priming. J Agric Soc Sci 1(2):172–175

    Google Scholar 

  • Farooq M, Barsa SM, Wahid A (2006) Priming of field-sown rice seed enhances germination, seedling establishment, allometry and yield. Plant Growth Regul 49(2–3):285–294

    Article  CAS  Google Scholar 

  • Farooq M, Basra SM, Rehman H, Hussain M (2008) Seed priming with polyamines improves the germination and early seedling growth in fine rice. J N Seeds 9(2):145–155

    Article  Google Scholar 

  • Farooq M, Aziz T, Cheema ZA, Hussain M, Khaliq A (2008) Activation of antioxidant system by KCl improves the chilling tolerance in hybrid maize. J Agron Crop Sci 194(6):438–448

    Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Rehman H (2009) Exogenously applied nitric oxide enhances the drought tolerance in fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci 195(4):254–261

    Article  CAS  Google Scholar 

  • Farooq M, Atique-ur-Rehman Aziz T, Habib M (2011) Boron nutripriming improves the germination and early seedling growth of rice (Oryza sativa L.). J Plant Nutr 34(10):1507–1515

    Article  CAS  Google Scholar 

  • Fatokun K, Beckett RP, Varghese B, Cloete J, Pammenter NW (2020) Influence of cathodic water invigoration on the emergence and subsequent growth of controlled deteriorated pea and pumpkin seeds. Plants 9(8):955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fatokun K, Beckett RP, Varghese B, Pammenter NW (2021) Cathodic water enhances seedling emergence and growth of controlled deteriorated orthodox seeds. Plants 10(6):1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallardo K, Job C, Groot SP, Puype M, Demol H, Vandekerckhove J, Job D (2001) Development and hormone action—proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126(2):835–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerekhove J, Job D (2004) Proteomics of Arabidopsis seed germination and priming. In: Nicholas G et al (eds) The biology of seeds: recent advances. CABI, Cambridge, pp 199–209

    Google Scholar 

  • Gao Y-P, Young L, Bonham-Smith PC, Gusta LV (1999) Characterization and expression of plasma and tonoplast membrane aquaporins in primed seed of Brassica napus during germination under stress conditions. Plant Mol Biol 40:635–644

    Article  CAS  PubMed  Google Scholar 

  • Gao Y-P, Bonham-Smith PC, Gusta LV (2002) The role of peroxiredoxin antioxidant and calmodulin in ABA-primed seeds of Brassica napus exposed to abiotic stresses during germination. J Plant Physiol 159(9):951–958

    Article  CAS  Google Scholar 

  • García AC, Santos LA, de Souza LGA, Tavares OCH, Zonta E, Gomes ETM, García-Mina JM, Berbara RLL (2016) Vermicompost humic acids modulate the accumulation and metabolism of ROS in rice plants. J Plant Physiol 192:56–63

    Article  PubMed  Google Scholar 

  • Ghaffari MR, Mirzaei M, Ghabooli M, Khatabi B, Wu Y, Zabet-Moghaddam M, Mohammadi-Nejad G, Haynes PA, Hajirezaei MR, Sepehri M, Salekdeh GH (2019) Root endophytic fungus Piriformospora indica improves drought stress adaptation in barley by metabolic and proteomic reprogramming. Environ Exp Bot 157:197–210

    Article  CAS  Google Scholar 

  • Gondwe DSB, Berjak P, Pammenter NW, Varghese B (2016) Effect of priming with cathodic water and subsequent storage on invigoration of Pisum sativum, Cucurbita maxima and Lycopersicon esculentum seeds. Seed Sci Technol 44(2):370–381

    Article  Google Scholar 

  • González-Zertuche L, Vázquez-Yanes C, Gamboa A, Sánchez-Coronado ME, Aguilera P, Orozco-Segovia A (2001) Natural priming of Wigandia urens seeds during burial: effects on germination, growth and protein expression. Seed Sci Res 11(1):27–34

    Article  Google Scholar 

  • Goswami A, Banerjee R, Raha S (2013) Drought resistance in rice seedlings conferred by seed priming. Protoplasma 250(5):1115–1129

    Article  CAS  PubMed  Google Scholar 

  • Guha T, Ravikumar KV, Mukherjee A, Mukherjee A, Kundu R (2018) Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.). Plant Physiol Biochem 127:403–413

    Article  CAS  PubMed  Google Scholar 

  • He D, Wang Q, Wang K, Yang P (2015) Genome-wide dissection of the microRNA expression profile in rice embryo during early stages of seed germination. PLoS ONE 10(12):e0145424

    Article  PubMed  PubMed Central  Google Scholar 

  • Hemalatha G, Renugadevi J, Eevera T (2017) Studies on seed priming with hydrogen peroxide for mitigating salt stress in rice. Int J Curr Microbiol Appl Sci 6(6):691–695

    Article  CAS  Google Scholar 

  • Heydecker W (1974) Germination of an idea: the priming of seeds. Reports of School of Agricultural University Nottingham 1973, pp 50–67

  • Hussain S, Zheng M, Khan F, Khaliq A, Fahad S, Peng S, Huang J, Cui K, Nie L (2015) Benefits of rice seed priming are offset permanently by prolonged storage and the storage conditions. Sci Rep 5(1):1–2

    Article  CAS  Google Scholar 

  • Hussain S, Khan F, Hussain HA, Nie L (2016) Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Front Plant Sci 7:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Yin H, Peng S, Khan FA, Khan F, Sameeullah M, Hussain HA, Huang J, Cui K, Nie L (2016) Comparative transcriptional profiling of primed and non-primed rice seedlings under submergence stress. Front Plant Sci 7:1125

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikeura H, Kobayashi F, Tamaki M (2014) Hydropriming treatment of rice seeds with microbubble water. J Agric Sci 6(6):189

    Google Scholar 

  • Itroutwar PD, Govindaraju K, Tamilselvan S, Kannan M, Raja K, Subramanian KS (2019) Seaweed-based biogenic ZnO nanoparticles for improving agro-morphological characteristics of rice (Oryza sativa L.). J Plant Growth Regul 5:1–2

    Google Scholar 

  • Jafri N, Mazid M, Mohammad F (2015) Responses of seed priming with gibberellic acid on yield and oil quality of sunflower (Helianthus annus L.). Indian J Agric Sci 49(3):235–240

    Google Scholar 

  • Jain N, Van Staden J (2007) The potential of the smoke-derived compound 3-methyl-2H-furo[2,3-c]pyran-2-one as a priming agent for tomato seeds. Seed Sci Res 17:175–181

    Article  CAS  Google Scholar 

  • Jeevan Kumar SP, Rajendra Prasad S, Banerjee R, Thammineni C (2015) Seed birth to death: dual functions of reactive oxygen species in seed physiology. Ann Bot 116(4):663–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalaivani K, Kalaiselvi MM, Senthil-Nathan S (2016) Effect of methyl salicylate (MeSA), an elicitor on growth, physiology and pathology of resistant and susceptible rice varieties. Sci Rep 6(1):1–11

    Article  Google Scholar 

  • Kalhori N, Nulit R, Azizi P, Abiri R, Atabki N (2018) Hydro priming stimulates seedling growth and establishment of Malaysian indica rice (mr219) under drought stress. Acta Sci Agric 2(11):9–16

    Google Scholar 

  • Kasote DM, Lee JH, Jayaprakasha GK, Patil BS (2019) Seed priming with iron oxide nanoparticles modulate antioxidant potential and defense-linked hormones in watermelon seedlings. ACS Sustain Chem Eng 7(5):5142–5151

    Article  CAS  Google Scholar 

  • Kester ST, Geneve RL, Houtz RL (1997) Priming and accelerated ageing affect L-isoaspartyl methyltransferase activity in tomato (Lycopersicon esculentum Mill.) seed. J Exp Bot 48(4):943–949

    Article  CAS  Google Scholar 

  • Khalaki MA, Moameri M, Lajayer BA, Astatkie T (2021) Influence of nano-priming on seed germination and plant growth of forage and medicinal plants. Plant Growth Regul 93:13–28

    Article  Google Scholar 

  • Khan E, Gupta M (2018) Arsenic–silicon priming of rice (Oryza sativa L.) seeds influence mineral nutrient uptake and biochemical responses through modulation of Lsi-1, Lsi-2, Lsi-6 and nutrient transporter genes. Sci Rep 8(1):1–6

    Article  Google Scholar 

  • Khan I, Raza MA, Awan SA, Shah GA, Rizwan M, Ali B, Tariq R, Hassan MJ, Alyemeni MN, Brestic M, Zhang X (2020) Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): the oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiol Biochem 156:221–232

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Kwak KJ, Jung HJ, Lee HJ, Kang H (2010) MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER-LIKE Protein3 mRNA. Plant Cell Physiol 51(6):1079–1083

    Article  CAS  PubMed  Google Scholar 

  • Kim W, Lee Y, Park J, Lee N, Choi G (2013) HONSU, a protein phosphatase 2C, regulates seed dormancy by inhibiting ABA signaling in Arabidopsis. Plant Cell Physiol 54(4):555–572

    Article  CAS  PubMed  Google Scholar 

  • Latef AA, Alhmad MF, Abdelfattah KE (2017) The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J Plant Growth Regul 36(1):60–70

    Article  Google Scholar 

  • Lee SS, Kim JH, Hong SB, Yun SH, Park EH (1998) Priming effect of rice seeds on seedling establishment under adverse soil conditions. Korean J Crop Sci 43(3):194–198

    Google Scholar 

  • Li X, Zhang L (2012) SA and PEG-induced priming for water stress tolerance in rice seedling. In: Information technology and agricultural engineering.  Springer, Berlin, pp 881–887

  • Light ME, Daws MI, Van Staden J (2009) Smoke-derived butenolide: towards understanding its biological effects. S Afr J Bot 75(1):1–7

    Article  CAS  Google Scholar 

  • Lutts S, Benincasa P, Wojtyla L, Kubala S, Pace R, Lechowska K, Quinet M, Garnczarska M (2016) Seed priming: new comprehensive approaches for an old empirical technique. In: New challenges in seed biology: basic and translational research driving seed technology, vol 12. InTech Open, Rijeka, pp 1-46

  • Ma HY, Zhao DD, Ning QR, Wei JP, Li Y, Wang MM, Liu XL, Jiang CJ, Liang ZW (2018) A multi-year beneficial effect of seed priming with gibberellic acid-3 (GA 3) on plant growth and production in a perennial grass, Leymus chinensis. Sci Rep 8(1):1–9

    Article  Google Scholar 

  • MacDonald C, Singh B (2014) Harnessing plant–microbe interactions for enhancing farm productivity. Bioengineered 5(1):5–9

    Article  PubMed  Google Scholar 

  • Magneschi L, Kudahettige RL, Alpi A, Perata P (2009) Expansin gene expression and anoxic coleoptile elongation in rice cultivars. J Plant Physiol 166(14):1576–1580

    Article  CAS  PubMed  Google Scholar 

  • Mahajan G, Sarlach RS, Japinder S, Gill MS (2011) Seed priming effects on germination, growth and yield of dry direct-seeded rice. J Crop Improv 25(4):409–417

    Article  Google Scholar 

  • Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P (2017) Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep 7(1):1–21

    Article  CAS  Google Scholar 

  • Mahmood A, Turgay OC, Farooq M, Hayat R (2016) Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol Ecol 92(8):fiw112

    Article  PubMed  Google Scholar 

  • Masondo NA, Kulkarni MG, Finnie JF, Van Staden J (2018) Influence of biostimulants-seed-priming on Ceratotheca triloba germination and seedling growth under low temperatures, low osmotic potential and salinity stress. Ecotoxicol Environ Saf 147:43–48

    Article  CAS  PubMed  Google Scholar 

  • Matsunami M, Hayashi H, Murai-Hatano M, Ishikawa-Sakurai J (2021) Effect of hydropriming on germination and aquaporin gene expression in rice. Plant Growth Regul 4:1–8

    Google Scholar 

  • Mohanlall V, Odayar K, Odhav B (2013) The role of nanoparticles on the plant growth of orthodox and recalcitrant seeds. Adv Compos Biocompos Nanocompos 1(1):287–304

    Google Scholar 

  • Mohammadi MH, Panahirad S, Navai A, Bahrami MK, Kulak M, Gohari G (2021) Cerium oxide nanoparticles (CeO2-NPs) improve growth parameters and antioxidant defense system in Moldavian Balm (Dracocephalum moldavica L.) under salinity stress. Plant Stress 1:100006

    Article  CAS  Google Scholar 

  • Mondal S, Kumar M, Bose B (2018) Effect of hydropriming and osmopriming with magnesium nitrate in the early vegetative growth phase of rice variety Swarna. J Pharmacogn Phytochem 7(5):1343–1346

    CAS  Google Scholar 

  • Moosavi A, Tavakkol Afshari R, Sharif-Zadeh F, Aynehband A (2009) Effect of seed priming on germination characteristics, polyphenoloxidase, and peroxidase activities of four amaranth cultivars. J Food Agric Environ 7:353–358

    CAS  Google Scholar 

  • Moulick D, Santra SC, Ghosh D (2018) Rice seed priming with Se: a novel approach to mitigate as induced adverse consequences on growth, yield and as load in brown rice. J Hazard Mater 355:187–196

    Article  CAS  PubMed  Google Scholar 

  • Oluoch MO, Welbaum GE (1996) Viability and vigor of osmotically primed muskmelon seeds after nine years of storage. J Am Soc Hortic Sci 121(3):408–413

    Article  Google Scholar 

  • Özbingöl N, Corbineau F, Groot SP, Bino RJ, Côme D (1999) Activation of the cell cycle in tomato (Lycopersicon esculentum Mill.) seeds during osmoconditioning as related to temperature and oxygen. Ann Bot 84(2):245–251

    Article  Google Scholar 

  • Pandey C, Diwan H (2020) Assessing fertilizer use behaviour for environmental management and sustainability: a quantitative study in agriculturally intensive regions of Uttar Pradesh, India. Environ Dev Sustain 6:1–24

    CAS  Google Scholar 

  • Papaefthimiou D, Likotrafiti E, Kapazoglou A, Bladenopoulos K, Tsaftaris A (2010) Epigenetic chromatin modifiers in barley: III. Isolation and characterization of the barley GNAT-MYST family of histone acetyltransferases and responses to exogenous ABA. Plant Physiol Biochem 48(2–3):98–107

    Article  CAS  PubMed  Google Scholar 

  • Paparella S, Araújo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34(8):1281–1293

    Article  CAS  PubMed  Google Scholar 

  • Pathak H, Nayak AK, Jena M, Singh ON, Samal P, Sharma SG (2018) Rice research for enhancing productivity, profitability and climate resilience. ICAR-National Rice Research Institute, Cuttack

    Google Scholar 

  • Pehlivan N, Yesilyurt AM, Durmus N, Karaoglu SA (2017) Trichoderma lixii ID11D seed biopriming mitigates dose dependent salt toxicity in maize. Acta Physiol Plant 39(3):79

    Article  Google Scholar 

  • Paul S, Roychoudhury A (2017) Effect of seed priming with spermine/spermidine on transcriptional regulation of stress-responsive genes in salt-stressed seedlings of an aromatic rice cultivar. Plant Gene 11:133–142

    Article  CAS  Google Scholar 

  • Paul S, Roychoudhury A, Banerjee A, Chaudhuri N, Ghosh P (2017) Seed pre-treatment with spermidine alleviates oxidative damages to different extent in the salt (NaCl)-stressed seedlings of three indica rice cultivars with contrasting level of salt tolerance. Plant Gene 11:112–123

    Article  CAS  Google Scholar 

  • Pouramir-Dashtmian F, Khajeh-Hosseini M, Esfahani M (2014) Alleviating harmful effects of chilling stress on rice seedling via application of spermidine as seed priming factor. Afr J Agric Res 9(18):1412–1418

    Article  CAS  Google Scholar 

  • Prom-u‐thai C, Rerkasem B, Yazici A, Cakmak I (2012) Zinc priming promotes seed germination and seedling vigor of rice. J Plant Nutr Soil Sci 175(3):482–488

    Article  Google Scholar 

  • Rangjaroen C, Lumyong S, Sloan WT, Sungthong R (2019) Herbicide-tolerant endophytic bacteria of rice plants as the biopriming agents for fertility recovery and disease suppression of unhealthy rice seeds. BMC Plant Biol 19(1):580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman H, Kamran M, Basra SM, Afzal I, Farooq M (2015) Influence of seed priming on performance and water productivity of direct seeded rice in alternating wetting and drying. Rice Sci 22(4):189–196

    Article  Google Scholar 

  • Roy PR, Tahjib-Ul-Arif M, Polash MAS, Hossen MZ, Hossain MA (2019) Physiological mechanisms of exogenous calcium on alleviating salinity-induced stress in rice (Oryza sativa L.). Physiol Mol Biol Plants 25(3):611–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez MD, Gurusinghe SH, Bradford KJ, Vázquez-Ramos JM (2005) Differential response of PCNA and Cdk-A proteins and associated kinase activities to benzyladenine and abscisic acid during maize seed germination. J Exp Bot 56(412):515–523

    Article  PubMed  Google Scholar 

  • Selvarani K, Umarani R (2011) Evaluation of seed priming methods to improve seed vigour of onion (Allium cepa cv. aggregatum) and carrot (Daucus carota). J Agric Technol 7(3):857–867

    Google Scholar 

  • Sheteiwy MS, Fu Y, Hu Q, Nawaz A, Guan Y, Li Z, Huang Y, Hu J (2016) Seed priming with polyethylene glycol induces antioxidative defense and metabolic regulation of rice under nano-ZnO stress. Environ Sci Pollut Res 23(19):19989–20002

    Article  CAS  Google Scholar 

  • Sheteiwy MS, Dong Q, An J, Song W, Guan Y, He F, Huang Y, Hu J (2017) Regulation of ZnO nanoparticles-induced physiological and molecular changes by seed priming with humic acid in Oryza sativa seedlings. Plant Growth Regul 83:27–41

    Article  CAS  Google Scholar 

  • Sheteiwy M, Shen H, Xu J, Guan Y, Song W, Hu J (2017) Seed polyamines metabolism induced by seed priming with spermidine and 5-aminolevulinic acid for chilling tolerance improvement in rice (Oryza sativa L.) seedlings. Environ Exp Bot 137:58–72

    Article  CAS  Google Scholar 

  • Sheteiwy MS, Shao H, Qi W, Hamoud YA, Shaghaleh H, Khan NU, Yang R, Tang B (2019) GABA-alleviated oxidative injury induced by salinity, osmotic stress and their combination by regulating cellular and molecular signals in rice. Int J Mol Sci 20(22):5709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheteiwy MS, An J, Yin M, Jia X, Guan Y, He F, Hu J (2019) Cold plasma treatment and exogenous salicylic acid priming enhances salinity tolerance of Oryza sativa seedlings. Protoplasma 256(1):79–99

    Article  CAS  PubMed  Google Scholar 

  • Shu K, Liu XD, Xie Q, He ZH (2016) Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant 9(1):34–45

    Article  CAS  PubMed  Google Scholar 

  • Silva BF, Azevedo IHF, Mayhé-Nunes A, Breier T, Freitas AFND (2019) Ants promote germination of the tree Guarea guidonia by cleaning its seeds. Floresta Ambiente. https://doi.org/10.1590/2179-8087.015118

    Article  Google Scholar 

  • Singh VP, Kumar J, Singh M, Singh S, Prasad SM, Dwivedi R, Singh MP (2016) Role of salicylic acid-seed priming in the regulation of chromium(VI) and UV-B toxicity in maize seedlings. Plant Growth Regul 78:79–91

    Article  CAS  Google Scholar 

  • Singh A, Gupta R, Pandey R (2016) Rice seed priming with picomolar rutin enhances rhizospheric Bacillus subtilis CIM colonization and plant growth. PLoS ONE 11(1):e0146013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh K, Madhusudanan M, Ramawat N (2019) Synthesis and characterization of zinc oxide nano particles (ZnO NPs) and their effect on growth, Zn content and yield of rice (Oryza sativa L.). Synthesis 6(3):9750–9754

    Google Scholar 

  • Singh A, Banerjee A, Roychoudhury A (2020) Seed priming with calcium compounds abrogate fluoride-induced oxidative stress by upregulating defence pathways in an indica rice variety. Protoplasma 257:767–782

    Article  CAS  PubMed  Google Scholar 

  • Sivakumar T, Ambika S, Balakrishnan K (2017) Biopriming of rice seed with Phosphobacteria for enhanced germination and vigour. ORYZA Int J Rice 54(3):346–349

    Article  Google Scholar 

  • Soeda Y, Konings MC, Vorst O, van Houwelingen AM, Stoopen GM, Maliepaard CA, Kodde J, Bino RJ, Groot SP, van der Geest AH (2005) Gene expression programs during Brassica oleracea seed maturation, osmopriming, and germination are indicators of progression of the germination process and the stress tolerance level. Plant Physiol 137(1):354–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza ML, Silva DRP, Fantecelle LB, Lemos JPD (2015) Key factors affecting seed germination of Copaifera langsdorffii, a Neotropical tree. Acta Bot Bras 29:473–477

    Article  Google Scholar 

  • Srivastava AK, Lokhande VH, Patade VY, Suprasanna P, Sjahril R, D’Souza SF (2010) Comparative evaluation of hydro-, chemo-, and hormonal-priming methods for imparting salt and PEG stress tolerance in Indian mustard (Brassica juncea L.). Acta Physiol Plant 32(6):1135–1144

    Article  Google Scholar 

  • Sukifto R, Nulit R, Kong YC, Sidek N, Mahadi SN, Mustafa N, Razak RA (2020) Enhancing germination and early seedling growth of Malaysian indica rice (Oryza sativa L.) using hormonal priming with gibberellic acid (GA 3). AIMS Agric Food 5(4):649

    Article  Google Scholar 

  • Sureshrao KS, Pradeeprao KT, Dnyanobarao GS, Agrawal T, Kotasthane AS (2016) Root growth stimulation in rice (Oryza sativa L.) by seed bio-priming with Trichoderma sp. Appl Biol Res 18(1):30–38

    Article  Google Scholar 

  • Tahjib-Ul-Arif M, Roy PR, Sohag AAM, Afrin S, Rady MM, Hossain MA (2018) Exogenous calcium supplementation improves salinity tolerance in BRRI dhan28; a salt-susceptible high-yielding Oryza sativa cultivar. J Crop Sci Biotechnol 21(4):383–394

    Article  Google Scholar 

  • Md Tahjib-Ul-Arif, Sonya A, Mohammed ASP, Tahmina A, Shuma RR, Md TH, Hossain MA (2019) Role of exogenous signaling molecules in alleviating salt-induced oxidative stress in rice (Oryza sativa L.): a comparative study. Acta Physiol Plant 41(5):69

    Article  Google Scholar 

  • Tanou G, Fotopoulos V, Molassiotis A (2012) Priming against environmental challenges and proteomics in plants: update and agricultural perspectives. Front Plant Sci 3:216

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas DT, Puthur JT (2019) Amplification of abiotic stress tolerance potential in rice seedlings with a low dose of UV-B seed priming. Funct Plant Biol 46(5):455–466

    Article  CAS  PubMed  Google Scholar 

  • Thomas TT, Puthur JT (2020) UV-B priming enhances specific secondary metabolites in Oryza sativa (L.) empowering to encounter diverse abiotic stresses. Plant Growth Regul 92:169–180

    Article  CAS  Google Scholar 

  • Toorop PE, van Aelst AC, Hilhorst HW (1998) Endosperm cap weakening and endo-β-mannanase activity during priming of tomato (Lycopersicon esculentum cv. Moneymaker) seeds are initiated upon crossing a threshold water potential. Seed Sci Res 8(4):483–492

    Article  CAS  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163(3):515–523

    Article  CAS  Google Scholar 

  • Vander Willigen C, Postaire O, Tournaire-Roux C, Boursiac Y, Maurel C (2006) Expression and inhibition of aquaporins in germinating Arabidopsis seeds. Plant Cell Physiol 47(9):1241–1250

    Article  CAS  PubMed  Google Scholar 

  • Vari A, Mitrabinda S, Dadlani M, Sharma SP (2003) Physiological and biochemical changes associated with osmopriming in maize seeds. In: 2nd International congress of plant physiology, pp 8–12

  • Varier A, Vari AK, Dadlani M (2010) The subcellular basis of seed priming. Curr Sci 25:450–456

    Google Scholar 

  • Wahid A, Perveen M, Gelani S, Basra SM (2007) Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol 164(3):283–294

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9(5):244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang W, He A, Peng S, Huang J, Cui K, Nie L (2018) The effect of storage condition and duration on the deterioration of primed rice seeds. Front Plant Sci 9:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Li H, Li X, Xin C, Si J, Li S, Li Y, Zheng X, Li H, Wei X, Zhang Z (2020) Nano-ZnO priming induces salt tolerance by promoting photosynthetic carbon assimilation in wheat. Arch Agron Soil Sci 66(9):1259–1273

    Article  CAS  Google Scholar 

  • Watanabe KA, Ringler P, Gu L, Shen QJ (2014) RNA-sequencing reveals previously unannotated protein- and microRNA-coding genes expressed in aleurone cells of rice seeds. Genomics 103(1):122–134

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Qin LF, Wang T (2011) Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. Genome Biol 12(6):1–16

    Article  Google Scholar 

  • Wijayratne UC, Pyke DA (2012) Burial increases seed longevity of two Artemisia tridentata (Asteraceae) subspecies. Am J Bot 99(3):438–447

    Article  PubMed  Google Scholar 

  • Wu M-F, Tian Q, Reed JW (2006) Arabidopsis  microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133(21):4211–4218

    Article  CAS  PubMed  Google Scholar 

  • Xiang Y, Huang Y, Xiong L (2007) Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144(3):1416–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue L-J, Zhang J-J, Hong-Wei X (2009) Characterization and expression profiles of miRNAs in rice seeds. Res Spec Publ 37(3):916–930

    CAS  Google Scholar 

  • Yadav PV, Kumari M, Ahmed Z (2011) Seed priming mediated germination improvement and tolerance to subsequent exposure to cold and salt stress in capsicum. Res J Seed Sci 4(3):125–136

    Article  Google Scholar 

  • Yang P, Li X, Wang X, Chen H, Chen F, Shen S (2007) Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics 7(18):3358–3368

    Article  CAS  PubMed  Google Scholar 

  • Sun Y-Y, Sun Y-J, Wang M-T, Li X-Y, Guo X, Hu R, Ma J (2010) Effects of seed priming on germination and seedling growth under water stress in rice. Acta Agron Sin 36(11):1931–1940

    Article  CAS  Google Scholar 

  • Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354(2):585–590

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Chen F, Wang Z, Cao H, Li X, Deng X, Soppe WJ, Li Y, Liu Y (2012) A novel role for histone methyltransferase KYP/SUVH4 in the control of Arabidopsis primary seed dormancy. N Phytol 193(3):605–616

    Article  CAS  Google Scholar 

Download references

Funding

The research was supported by CAS, Department of Botany, University of Calcutta. SD (UGC JRF) acknowledges University Grants Commission (UGC) for providing fellowship to her.

Author information

Authors and Affiliations

Authors

Contributions

SP and SD reviewed the literature, have drafted and formatted the manuscript and figures; RK designed the study and critically reviewed the manuscript.

Corresponding author

Correspondence to Rita Kundu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Communicated by Johannes van Staden.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S., Dey, S. & Kundu, R. Seed priming: an emerging tool towards sustainable agriculture. Plant Growth Regul 97, 215–234 (2022). https://doi.org/10.1007/s10725-021-00761-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-021-00761-1

Keywords

Navigation