Skip to main content

Advertisement

Log in

Genetic improvement combined with seed ethephon priming improved grain yield and drought resistance of wheat exposed to soil water deficit at tillering stage

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Knowledge of short-term physiological adaption of wheat to soil water deficit is well understood, but little is known about seed ethephon priming effect on stress memory against drought at the tillering stage of wheat. The 42 leading and modern cultivars released between 1991 and 2012 were subjected to drought (45% Field water-holding capacity), and well-watered (75% Field water-holding capacity) for 3 weeks to evaluate the genetic progress of wheat against drought stress. Seeds of the drought-sensitive cultivar (CM104) primed with ethephon were subjected to soil water deficit and well-watered to uncover ethephon-induced stress responses at organic, cellular, and molecular levels. Soil water deficit (45% FC) occurred at the tillering stage resulted in 3.2 to 67.4% yield loss, and genetic improvement of wheat against drought resulted in the yield loss decreased at a rate of 0.70% per year, which was determined mainly by fertile spike. Seed ethephon priming maintained leaf water under soil water deficit at the tillering stage by improving root volume and dry weight, which maintained leaf water and improved the drought avoidance capability of wheat. Seed ethephon priming decreased leaf malondialdehyde content by regulating root ERF, root to leaf ABA signaling, leaf ROS-scavenging capability, and leaf osmotic regulation, which improved the drought tolerance capability of dryland wheat. Comparative root tips transcriptome analysis revealed that differentially expressed genes and pathways involved in ethylene-induced drought tolerance are associated with carbon metabolism, glutathione metabolism, and phenylpropanoid biosynthesis. At maturity, seed ethephon priming increased fertile spikes and reduced spikelets abortion, which provided extra 0.3 t ha−1 of grain yield. These results suggested that seed ethephon priming allowed the recall of long-lasting stress defensive memory, increasing fertile spikes and grain yield by both drought avoidance and drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abid M, Hakeem A, Shao YH, Liu Y, Zahoor R, Fan YH, Jiang SY, Ata-Ul-Karim ST, Tian ZW, Jiang D, Snider JL, Dai TB (2018) Seed osmopriming invokes stress memory against post-germinative drought stress in wheat (Triticum aestivum L.). Environ Exp Bot 145:12–20. https://doi.org/10.1016/j.envexpbot.2017.10.002

    Article  CAS  Google Scholar 

  • Abid M, Shao Y, Liu S, Wang F, Gao J, Jiang D, Tian Z, Dai T (2017) Pre-drought priming sustains grain development under post-anthesis drought stress by regulating the growth hormones in winter wheat (Triticum aestivum L.). Planta 246(3):509–524. https://doi.org/10.1007/s0025-017-2698-4

    Article  CAS  PubMed  Google Scholar 

  • Arraes FB, Beneventi MA, Lisei de Sa ME, Paixao JF, Albuquerque EV, Marin SR, Purgatto E, Nepomuceno AL, Grossi-de-Sa MF (2015) Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance. BMC Plant Biol 15:213. https://doi.org/10.1186/s12870-015-0597-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blum A (2017) Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ 40(1):4–10. https://doi.org/10.1111/pce.12800

    Article  CAS  PubMed  Google Scholar 

  • Castillo G, Martinez S (1997) Reversed-phase C18 high-performance liquid chromatography of gibberellins GA3 and GA1. J Chromatogr A 782(1):137–139

    Article  CAS  Google Scholar 

  • Chaichi M, Sanjarian F, Razavi K, Gonzalez-Hernandez JL (2019) Analysis of transcriptional responses in root tissue of bread wheat landrace (Triticum aestivum L.) reveals drought avoidance mechanisms under water scarcity. Plos One 14(3):23. https://doi.org/10.1371/journal.pone.0212671

    Article  CAS  Google Scholar 

  • Daryanto S, Wang LX, Jacinthe PA (2017) Global synthesis of drought effects on cereal, legume, tuber and root crops production: a review. Agric Water Manage 179:18–33. https://doi.org/10.1016/j.agwat.2016.04.022

    Article  Google Scholar 

  • Divte P, Yadav P, Jain PK, Paul S, Singh B (2019) Ethylene regulation of root growth and phytosiderophore biosynthesis determines iron deficiency tolerance in wheat (Triticum spp). Environ Exp Bot 162:1–13

    Article  CAS  Google Scholar 

  • Djanaguiraman M, Prasad PVV, Kumari J, Rengel Z (2019) Root length and root lipid composition contribute to drought tolerance of winter and spring wheat. Plant Soil 439(1–2):57–73. https://doi.org/10.1007/s11104-018-3794-3

    Article  CAS  Google Scholar 

  • Egea I, Albaladejo I, Meco V, Morales B, Sevilla A, Bolarin MC, Flores FB (2018) The drought-tolerant Solanum pennellii regulates leaf water loss and induces genes involved in amino acid and ethylene/jasmonate metabolism under dehydration. Sci Rep 8(1):2791. https://doi.org/10.1038/s41598-018-21187-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang Y, Du Y, Wang J, Wu A, Qiao S, Xu B, Zhang S, Siddique KHM, Chen Y (2017) Moderate drought stress affected root growth and grain yield in old, modern and newly released cultivars of winter wheat. Front Plant Sci 8:672. https://doi.org/10.3389/fpls.2017.00672

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang Y, Liao K, Du H, Xu Y, Song H, Li X, Xiong L (2015) A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot 66(21):6803–6817. https://doi.org/10.1093/jxb/erv386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72(4):673–689. https://doi.org/10.1007/s00018-014-1767-0

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Hussain M, Siddique KHM (2014) Drought stress in wheat during flowering and grain-filling periods. Crit Rev Plant Sci 33(4):331–349

    Article  CAS  Google Scholar 

  • Fleta-Soriano E, Pinto-Marijuan M, Munne-Bosch S (2015) Evidence of drought stress memory in the facultative CAM, Aptenia cordifolia: possible role of phytohormones. Plos One 10(8):e0135391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Godwin J, Farrona S (2020) Plant epigenetic stress memory induced by drought: a physiological and molecular perspective. Methods Mol Biol 2093:243–259

    Article  CAS  PubMed  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151. https://doi.org/10.3389/fpls.2014.00151

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Rico-Medina A, Cano-Delgado AI (2020) The physiology of plant responses to drought. Science 368(6488):266–269. https://doi.org/10.1126/science.aaz7614

    Article  CAS  PubMed  Google Scholar 

  • Hameed A, Bibi N, Akhter J, Iqbal N (2011) Differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions. Plant Physiol Biochem 49(2):178–185. https://doi.org/10.1016/j.plaphy.2010.11.009

    Article  CAS  PubMed  Google Scholar 

  • Hameed A, Farooq T, Hameed A, Sheikh MA (2020) Chitosan seed priming improves yield and recall defence memory under drought stress in wheat (Triticum aestivum L.). Agrochimica 64(1):59–79

    Article  CAS  Google Scholar 

  • Harb A, Simpson C, Guo W, Govindan G, Kakani VG, Sunkar R (2020) The effect of drought on transcriptome and hormonal profiles in barley genotypes with contrasting drought tolerance. Front Plant Sci 11:618491

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang YC, Tsun-Hao Y, Chin-Ying Y (2019) Ethylene signaling involves in seeds germination upon submergence and antioxidant response elicited confers submergence tolerance to rice seedlings. Rice 12(23):23

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Bai ZG, Huang J, Cao XC, Zhu LF, Zhu CQ, Khaskheli MA, Zhong C, Jin QY, Zhang JH (2019) 1-Methylcyclopropene modulates physiological, biochemical, and antioxidant responses of rice to different salt stress levels. Front Plant Sci. https://doi.org/10.3389/fpls.2019.00124

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Zhu CQ, Huang J, Huang J, Zhu LF, Cao XC, Nandi S, Khaskheli MA, Liang QD, Kong YL, Jin QY, Zhang JH (2020) Ethylene response of salt stressed rice seedlings following Ethephon and 1-methylcyclopropene seed priming. Plant Growth Regul 92(2):219–231. https://doi.org/10.1007/s10725-020-00632-1

    Article  CAS  Google Scholar 

  • IPCC (2016) Intergovernmental Panel on Climate Change (IPCC). http://www.ipcc.ch/. Accessed January 2016

  • Jisha KC, Vijayakumari K, Puthur JT (2013) Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant 35(5):1381–1396. https://doi.org/10.1007/s11738-012-1186-5

    Article  Google Scholar 

  • Johnson R, Puthur JT (2021) Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiol Bioch 162:247–257. https://doi.org/10.1016/j.plaphy.2021.02.034

    Article  CAS  Google Scholar 

  • Kamphorst SH, Amaral Júnior ATd, Lima VJd, Guimarães LJM, Schmitt KFM, Leite JT, Santos PHAD, Chaves MM, Mafra GS, Santos Junior DRd, Cruz CD, Campostrini E (2019) Can genetic progress for drought tolerance in popcorn be achieved by indirect selection? Agronomy 9(12):792. https://doi.org/10.3390/agronomy9120792

    Article  Google Scholar 

  • Katuwal KB, Schwartz B, Jespersen D (2020) Desiccation avoidance and drought tolerance strategies in bermudagrasses. Environ Exp Bot 171:103947. https://doi.org/10.1016/j.envexpbot.2019.103947

    Article  CAS  Google Scholar 

  • Kemal K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20(4):219–229

    Article  CAS  Google Scholar 

  • Khan NA, Mir MR, Nazar R, Singh S (2008) The application of ethephon (an ethylene releaser) increases growth, photosynthesis and nitrogen accumulation in mustard (Brassica juncea L.) under high nitrogen levels. Plant Biol 10(5):534–538. https://doi.org/10.1111/j.1438-8677.2008.00054.x

    Article  CAS  PubMed  Google Scholar 

  • Kim YK, Chae S, Oh NI, Nguyen NH, Cheong JJ (2020) Recurrent drought conditions enhance the induction of drought stress memory genes in glycine max L. Front Genet 11

  • Kolbert Z, Feigl G, Freschi L, Poor P (2019) Gasotransmitters in action: nitric oxide-ethylene crosstalk during plant growth and abiotic stress responses. Antioxidants 8(6):22. https://doi.org/10.3390/antiox8060167

    Article  CAS  Google Scholar 

  • Kumar M, Chauhan AS, Kumar M, Yusuf MA, Sanyal I, Chauhan PS (2019) Transcriptome sequencing of chickpea (Cicer arietinum L.) genotypes for identification of drought-responsive genes under drought stress condition. Plant Mol Biol Rep 37(3):186–203. https://doi.org/10.1007/s11105-019-01147-4

    Article  CAS  Google Scholar 

  • Lang DY, Fei PX, Cao GY, Jia XX, Zhang XH (2018) Silicon promotes seedling growth and alters endogenous IAA, GA3 and ABA concentrations in Glycyrrhiza uralensis under 100 mM NaCl stress. J Hortic Sci Biotechnol 94(1):1–7

    Google Scholar 

  • Larkunthod P, Nounjan N, Siangliw JL, Toojinda T, Sanitchon J, Jongdee B, Theerakulpisut P (2018) Physiological responses under drought stress of improved drought-tolerant rice lines and their parents. Not Bot Horti Agrobot Cluj-Na 46(2):679–687. https://doi.org/10.15835/nbha46211188

    Article  CAS  Google Scholar 

  • Li CS, Li JG, Tang YL, Wu XL, Wu C, Huang G, Zeng H (2016) Stand establishment, root development and yield of winter wheat as affected by tillage and straw mulch in the water deficit hilly region of southwestern China. J Integr Agric 15(7):1480–1489. https://doi.org/10.1016/S2095-3119(15)61184-4

    Article  Google Scholar 

  • Li PF, Ma BL, Palta JA, Ding TT, Cheng ZG, Lv GC, Xiong YC (2021) Wheat breeding highlights drought tolerance while ignores the advantages of drought avoidance: a meta-analysis. Eur J Agron 122:12

    Article  Google Scholar 

  • Li X, Topbjerg HB, Jiang D, Liu FL (2015a) Drought priming at vegetative stage improves the antioxidant capacity and photosynthesis performance of wheat exposed to a short-term low temperature stress at jointing stage. Plant Soil 393(1):307–318

    Article  CAS  Google Scholar 

  • Li X, Liu F (2016) Drought stress memory and drought stress tolerance in plants: biochemical and molecular basis. In: Drought stress tolerance in plants, vol 1. Springer, Cham, pp 17–44

  • Li X, Topbjerg HB, Jiang D, Liu FL (2015b) Drought priming at vegetative stage improves the antioxidant capacity and photosynthesis performance of wheat exposed to a short-term low temperature stress at jointing stage. Plant Soil 393(1–2):307–318. https://doi.org/10.1007/s11104-015-2499-0

    Article  CAS  Google Scholar 

  • Li S, Li X, Wei ZH, Liu FL (2020) ABA-mediated modulation of elevated CO2 on stomatal response to drought. Curr Opin Plant Biol 56:174–180

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Liu C, Zhang Y, Wang B, Ran Q, Zhang J (2019) The bHLH family member ZmPTF1 regulates drought tolerance in maize by promoting root development and abscisic acid synthesis. J Exp Bot 70(19):5471–5486. https://doi.org/10.1093/jxb/erz307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang CZ, Liu Y, Li YY, Meng ZG, Yan R, Zhu T, Wang Y, Kang SJ, Abid MA, Malik W, Sun GQ, Guo SD, Zhang R (2017) Activation of ABA receptors gene GhPYL9-11A is positively correlated with cotton drought tolerance in transgenic Arabidopsis. Front Plant Sci 8:1453

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu F, Shahnazari A, Andersen MN, Jacobsen SE, Jensen CR (2006) Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying: ABA signalling, leaf gas exchange, and water use efficiency. J Exp Bot 57(14):3727–3735. https://doi.org/10.1093/jxb/erl131

    Article  CAS  PubMed  Google Scholar 

  • Liu SX, Qin F (2021) Genetic dissection of maize drought tolerance for trait improvement. Mol Breed 41(2):1–13

    Article  Google Scholar 

  • Marthandan V, Geetha R, Kumutha K, Renganathan VG, Karthikeyan A, Ramalingam J (2020) Seed priming: a feasible strategy to enhance drought tolerance in crop plants. Int J Mol Sci 21(21):23

    Article  CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x

    Article  CAS  PubMed  Google Scholar 

  • Muscolo A, Junker A, Klukas C, Weigelt-Fischer K, Riewe D, Altmann T (2015) Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. J Exp Bot 66(18):5467–5480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie J, Wen C, Xi L, Lv S, Zhao Q, Kou Y, Ma N, Zhao L, Zhou X (2018) The AP2/ERF transcription factor CmERF053 of chrysanthemum positively regulates shoot branching, lateral root, and drought tolerance. Plant Cell Rep 37(7):1049–1060. https://doi.org/10.1007/s00299-018-2290-9

    Article  CAS  PubMed  Google Scholar 

  • Ozturk L, Demir Y (2003) Effects of putrescine and ethephon on some oxidative stress enzyme activities and proline content in salt stressed spinach leaves. Plant Growth Regul 40:89–95

    Article  Google Scholar 

  • Parizotto AV, Ferro AP, Marchiosi R, Finger-Teixeira A, Bevilaqua JM, dos Santos WD, Seixas FAV, Ferrarese-Filho O (2020) Inhibition of maize caffeate 3-O-methyltransferase by nitecapone as a possible approach to reduce lignocellulosic biomass recalcitrance. Plant Mol Biol Rep 39(1):179–191

    Article  CAS  Google Scholar 

  • Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62(3):869–882

    Article  CAS  PubMed  Google Scholar 

  • Pouri K, Mardeh ASS, Sohrabi Y, Soltani A (2019) Crop phenotyping for wheat yield and yield components against drought stress. Cereal Res Commun 47(2):383–393. https://doi.org/10.1556/0806.47.2019.05

    Article  CAS  Google Scholar 

  • Ranjan A, Nigam D, Asif MH, Singh R, Ranjan S, Mantri S, Pandey N, Trivedi I, Rai KM, Jena SN, Koul B, Tuli R, Pathre UV, Sawant SV (2012) Genome wide expression profiling of two accession of G. herbaceum L. in response to drought. BMC Genomics 13(1):94. https://doi.org/10.1186/1471-2164-13-94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadok W, Schoppach R (2019) Potential involvement of root auxins in drought tolerance by modulating nocturnal and daytime water use in wheat. Ann Bot 124(6):969–978. https://doi.org/10.1093/aob/mcz023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saeidnia F, Majidi MM, Mirlohi A, Spanani S, Karami Z, Bakhtiari MA (2020) A genetic view on the role of prolonged drought stress and mating systems on post-drought recovery, persistence and drought memory of orchardgrass (Dactylis glomerata L.). Euphytica. https://doi.org/10.1007/s10681-020-02624-8

    Article  Google Scholar 

  • Salleh MS, Nordin MS, Puteh AB (2020) Germination performance and biochemical changes under drought stress of primed rice seeds. Seed Sci Technol 48(3):333–343

    Article  Google Scholar 

  • Sanchez-Martin J, Heald J, Kingston-Smith A, Winters A, Rubiales D, Sanz M, Mur LA, Prats E (2015) A metabolomic study in oats (Avena sativa) highlights a drought tolerance mechanism based upon salicylate signalling pathways and the modulation of carbon, antioxidant and photo-oxidative metabolism. Plant Cell Environ 38(7):1434–1452. https://doi.org/10.1111/pce.12501

    Article  CAS  PubMed  Google Scholar 

  • Sen A, Puthur JT (2020) Seed priming-induced physiochemical and molecular events in plants coupled to abiotic stress tolerance: an overview. Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants

  • Seo YJ, Park JB, Cho YJ, Jung C, Seo HS, Park SK, Nahm BH, Song JT (2010) Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants. Mol Cells 30(3):271–277. https://doi.org/10.1007/s10059-010-0114-z

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Yu D, Warner E, Sun W, Petersen G, Gong Z, Lin H (2006) Cross-reference system for translating between genetic soil classification of China and soil taxonomy. Soil Sci Soc Am J 70(1):78–83

    Article  CAS  Google Scholar 

  • Singh D, Singh CK, Taunk J, Tomar RS, Chaturvedi AK, Gaikwad K, Pal M (2017) Transcriptome analysis of lentil (Lens culinaris Medikus) in response to seedling drought stress. BMC Genomics 18(1):206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tabassum T, Farooq M, Ahmad R, Zohaib A, Wahid A (2017) Seed priming and transgenerational drought memory improves tolerance against salt stress in bread wheat. Plant Physiol Bioch 118:362–369

    Article  CAS  Google Scholar 

  • Takagi H, Ishiga Y, Watanabe S, Konishi T, Egusa M, Akiyoshi N, Matsuura T, Mori IC, Hirayama T, Kaminaka H, Shimada H, Sakamoto A (2016) Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner. J Exp Bot 67(8):2519–2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tardieu F, Simonneau T, Muller B (2018) The physiological basis of drought tolerance in crop plants: a scenario-dependent probabilistic approach. Annu Rev Plant Biol 69:733–759

    Article  CAS  PubMed  Google Scholar 

  • Tian Q, Chen F, Liu J, Zhang F, Mi G (2008) Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. J Plant Physiol 165(9):942–951

    Article  CAS  PubMed  Google Scholar 

  • Tombesi S, Nardini A, Frioni T, Soccolini M, Zadra C, Farinelli D, Poni S, Palliotti A (2015) Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Sci Rep 5:12449

    Article  PubMed  PubMed Central  Google Scholar 

  • Vincent D, Lapierre C, Pollet B, Cornic G, Negroni L, Zivy M (2005) Water deficits affect caffeate O-methyltransferase, lignification, and related enzymes in maize leaves. A proteomic investigation. Plant Physiol 137(3):949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virlouvet L, Fromm M (2015) Physiological and transcriptional memory in guard cells during repetitive dehydration stress. New Phytol 205(2):596–607. https://doi.org/10.1111/nph.13080

    Article  CAS  PubMed  Google Scholar 

  • Walter J, Beierkuhnlein C, Jentsch A, Kreyling J (2013) Ecological stress memory and cross stress tolerance in plants in the face of climate extremes. Environ Exp Bot 94(5):3–8

    Article  Google Scholar 

  • Wang C, Lu G, Hao Y, Guo H, Guo Y, Zhao J, Cheng H (2017) ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton. Planta 246(3):453–469

    Article  CAS  PubMed  Google Scholar 

  • Wang FB, Zhu H, Chen DH, Li ZJ, Peng RH, Yao QH (2016) A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana. Plant Cell, Tissue Organ Cult 125(2):387–398. https://doi.org/10.1007/s11240-016-0953-1

    Article  CAS  Google Scholar 

  • Wang W, Wang L, Wang L, Tan M, Ogutu CO, Yin Z, Zhou J, Wang J, Wang L, Yan X (2021) Transcriptome analysis and molecular mechanism of linseed (Linum usitatissimum L.) drought tolerance under repeated drought using single-molecule long-read sequencing. BMC Genomics 22(1):109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Mao ZQ, Zhang J, Hemat M, Huang M, Cai J, Zhou Q, Dai TB, Jiang D (2019) Osmolyte accumulation plays important roles in the drought priming induced tolerance to post-anthesis drought stress in winter wheat (Triticum aestivum L.). Environ Exp Bot 166:103804

    Article  CAS  Google Scholar 

  • Wang X, Liu H, Yu F, Hu B, Zhao H (2019) Differential activity of the antioxidant defense system and alterations in the accumulation of osmolyte and reactive oxygen species under drought stress and recovery in rice (Oryza sativa L.) tillering. Sci Rep 9(1):1–11

    Google Scholar 

  • Wei B, Hou K, Zhang HH, Wang XY, Wu W (2020) Integrating transcriptomics and metabolomics to studies key metabolism, pathways and candidate genes associated with drought-tolerance in Carthamus tinctorius L. Under drought stress. Ind Crop Prod 151(15):112465

    Article  CAS  Google Scholar 

  • Wei H, Lv X, Yang J, Chen B, Zhao W, Meng Y, Wang Y, Zhou Z, Oosterhuis DM (2016) Effects of potassium deficiency on antioxidant metabolism related to leaf senescence in cotton (Gossypium hirsutum L.). Field Crop Res 191:139–149

    Article  Google Scholar 

  • Wu H, Fu B, Sun P, Xiao C, Liu JH (2016) A NAC Transcription factor represses putrescine biosynthesis and affects drought tolerance. Plant Physiol 172(3):1532–1547. https://doi.org/10.1104/pp.16.01096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Mo P, Chen Y, Chen R, Li Y, Xiang X, Huang X, Zheng T, Fan G (2021) Genetic progress in grain yield, radiation and nitrogen use efficiency of dryland winter wheat in Southwest China since 1965: progress and prospect for improvements. Crop Sci. https://doi.org/10.1002/csc2.20608

    Article  Google Scholar 

  • Yang H, Zhang X, Chen B, Meng Y, Wang Y, Zhao W, Zhou Z (2017) Integrated management strategies increase cottonseed, oil and protein production: the key role of carbohydrate metabolism. Front Plant Sci 8:48

    PubMed  PubMed Central  Google Scholar 

  • Yang H, Wu G, Mo P, Chen SH, Wang SY, Xiao Y, Ma HLA, Wen T, Guo X, Fan GQ (2020) The combined effects of maize straw mulch and no-tillage on grain yield and water and nitrogen use efficiency of dry-land winter wheat (Triticum aestivum L.). Soil Tillage Res 197:104485

    Article  Google Scholar 

  • Yilmaz C, Iscan M (2014) Glutathione S-Transferase activities and glutathione levels in needles of drought stressed Pinus Brutia Ten. trees. Turk J Biochem 39(2):238–243. https://doi.org/10.5505/tjb.2014.88319

    Article  CAS  Google Scholar 

  • Zhai Y, Zhang L, Xia C, Fu S, Zhao G, Jia J, Kong X (2016) The wheat transcription factor, TabHLH39, improves tolerance to multiple abiotic stressors in transgenic plants. Biochem Biophys Res Commun 473(4):1321–1327

    Article  CAS  PubMed  Google Scholar 

  • Zhang JY, Cruz DC, Maria H, Torres-Jerez I, Kang Y, Allen SN, Huhman DV, Tang Y, Murray J, Sumner LW, Udvardi MK (2015) Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering. Plant Cell Environ 37(11):2553–2576

    Article  Google Scholar 

  • Zhang N, Han L, Xu LX, Zhang XZ (2018) Ethephon seed treatment impacts on drought tolerance of kentucky bluegrass seedlings. HortTechnology 28(3):319–326. https://doi.org/10.21273/horttech03976-18

    Article  CAS  Google Scholar 

  • Zhang W, Wen CK (2010) Preparation of ethylene gas and comparison of ethylene responses induced by ethylene, ACC, and ethephon. Plant Physiol Biochem 48(1):45–53. https://doi.org/10.1016/j.plaphy.2009.10.002

    Article  PubMed  Google Scholar 

  • Zhu H, Zhou YY, Zhai H, He SZ, Zhao N, Liu QC (2019) Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweet potato. J Integr Agric 18(1):9–23

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development program (2016YFD0300406), The Fund of Technical Office in Sichuan Province (21YYJC1576), Special Fund for Agro-scientific Research in the public interest (20150312705), and Crops Breeding Project in Sichuan Province (2016NYZ0051). We thank our lab mates in the field management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaoqiong Fan.

Ethics declarations

Conflict of interest

No conflict of interest exists in submitting this manuscript, and all authors approve the manuscript for publication. I would like to declare on behalf of co-authors that the work described was original research that has not been published previously and is not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed.

Additional information

Communicated by Ben Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Hu, W., Zhao, J. et al. Genetic improvement combined with seed ethephon priming improved grain yield and drought resistance of wheat exposed to soil water deficit at tillering stage. Plant Growth Regul 95, 399–419 (2021). https://doi.org/10.1007/s10725-021-00749-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-021-00749-x

Keywords

Navigation