Skip to main content
Log in

Regulation of auxin accumulation and perception at different developmental stages in carrot

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Auxins are a class of small indolic compounds that affect plant growth and developmental processes. However, the molecular mechanisms underlying auxin accumulation and perception during carrot growth and development are still unclear. To address this, carrot samples from five stages were collected. Morphological characteristics and auxin accumulation were also investigated during carrot development. IAA levels underwent great changes at five successive stages, and IAA contents in the petioles and leaves were relatively higher than those in the roots. A total of 18 genes related to auxin biosynthesis and signaling were identified and their expression profiles were determined using quantitative real-time PCR. Transcript levels of most genes were not well correlated with auxin accumulation, indicating that IAA biosynthesis pathway may be regulated through a complex network. The results indicated that auxin may regulate carrot growth and development in tissue-specific and stage-dependent manner. This study would provide valuable resources for genetic and molecular research focused on carrot growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

ARF:

Auxin response factor

Aux/IAA:

Auxin/indole-3-acetic acid

GH3:

Gretchen Hagen3

IAA:

Indole-3-acetic acid

IAAld:

Indole-3-acetaldehyde

IAM:

Indole-3-acetamide

IAN:

Indole-3-acetonitrile

IAOx:

Indole-3-acetaldoxime

IPyA:

Indole-3-pyruvic acid

NAA:

1-Naphthaleneacetic acid

qRT-PCR:

Quantitative real-time PCR

TAA:

Tryptophan aminotransferase

TIR1:

Transport inhibitor response

Trp:

Tryptophan

References

  • Bak S, Tax FE, Feldmann KA, Galbraith DW, Feyereisen R (2001) CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell 13(1):101–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel B, Fink GR (1994) Differential regulation of an auxin-producing nitrilase gene family in Arabidopsis thaliana. Proc Natl Acad Sci USA 91(14):6649–6653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di DW, Zhang C, Luo P, An CW, Guo GQ (2015) The biosynthesis of auxin: how many paths truly lead to IAA? Plant Growth Regul 10:1–11

    CAS  Google Scholar 

  • Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW (2005) AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132(20):4563–4574

    Article  CAS  PubMed  Google Scholar 

  • Guilfoyle T, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10(5):453–460

    Article  CAS  PubMed  Google Scholar 

  • Haagen-Smit AJ, Leech WD, Bergen WR (1941) Estimation, isolation and identification of auxins in plant material. Science 93(2426):624–625

    Article  CAS  PubMed  Google Scholar 

  • Kramer EM, Ackelsberg EM (2015) Auxin metabolism rates and implications for plant development. Front Plant Sci 6:00150

    Google Scholar 

  • Leyser O (2002) Molecular genetics of auxin signaling. Annu Rev Plant Biol 53(53):377–398

    Article  CAS  PubMed  Google Scholar 

  • Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49(3–4):387–400

    Article  CAS  PubMed  Google Scholar 

  • Liu DJ, Chen JY, Lu WJ (2011a) Expression and regulation of the early auxin-responsive Aux/IAA genes during strawberry fruit development. Mol Biol Rep 38(2):1187–1193

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Jiang HY, Chen WJ, Qian YX, Ma Q, Cheng BJ, Zhu SW (2011b) Genome-wide analysis of the auxin response factor (ARF) gene family in maize (Zea mays). Plant Growth Regul 63(3):225–234

    Article  CAS  Google Scholar 

  • Liu H, Ying YY, Zhang L, Gao QH, Li J, Zhang Z, Fang JG, Duan K (2012) Isolation and characterization of two YUCCA flavin monooxygenase genes from cultivated strawberry (Fragaria × ananassa Duch.). Plant Cell Rep 31(8):1425–1435

    Article  CAS  PubMed  Google Scholar 

  • Luby CH, Maeda HA, Goldman IL (2014) Genetic and phenological variation of tocochromanol (vitamin E) content in wild (Daucus carota L. var. carota) and domesticated carrot (D. carota L. var. sativa). Hortic Res 1:14015

    Article  PubMed  PubMed Central  Google Scholar 

  • Marc G, Hooper LC, Johnson SD, Rodrigues JCM, Adam VS, Koltunow AM (2007) Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and Tomato. Plant Physiol 145(2):351–366

    Article  Google Scholar 

  • Mashiguchi K et al (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci USA 108(45):18512–18517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Normanly J, Grisafi P, Fink GR, Bartel B (1997) Arabidopsis mutants resistant to the auxin effects of indole-3-acetonitrile are defective in the nitrilase encoded by the NIT1 gene. Plant Cell 9(10):1781–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Torres C-A, López-Bucio J, Cruz-Ramírez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L (2008) Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20(12):3258–3272

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quint M, Gray WM (2006) Auxin signaling. Curr Opin Plant Biol 9(5):448–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen A, Hosseini SA, Hajirezaei MR, Druege U, Geelen D (2015) Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis. J Exp Bot 66(5):1437–1452

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Uribe L, Guzman I, Rajapakse W, Richins RD, O’Connell MA (2012) Carotenoid accumulation in orange-pigmented Capsicum annuum fruit, regulated at multiple levels. J Exp Bot 63(1):517–526

    Article  CAS  PubMed  Google Scholar 

  • Rong J, Lammers Y, Strasburg JL, Schidlo NS, Ariyurek Y, Jong TJ, Klinkhamer PGL, Smulders MJM, Vrieling K (2014) New insights into domestication of carrot from root transcriptome analyses. BMC Genom 15(1):895

    Article  Google Scholar 

  • Santner A, Estelle M (2010) The ubiquitin-proteasome system regulates plant hormone signaling. Plant J 61(6):1029–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt RC, Muller A, Hain R, Bartling D, Weiler EW (1996) Transgenic tobacco plants expressing the Arabidopsis thaliana nitrilase II enzyme. Plant J 9(5):683–691

    Article  CAS  PubMed  Google Scholar 

  • Spiess GM, Hausman A, Yu P, Cohen JD, Rampey RA, Zolman BK (2014) Auxin input pathway disruptions are mitigated by changes in auxin biosynthetic gene expression in Arabidopsis. Plant Physiol 165(3):1092–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Dolezal K, Schlereth A, Jürgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133(1):177–191

    Article  CAS  PubMed  Google Scholar 

  • Sun R, Wang K, Guo T, Jones DC, Cobb J, Zhang B, Wang Q (2015) Genome-wide identification of auxin response factor (ARF) genes and its tissue-specific prominent expression in Gossypium raimondii. Funct Integr Genomic 15(4):481–493

    Article  CAS  Google Scholar 

  • Suzuki M, Yamazaki C, Mitsui M, Kakei Y, Mitani Y, Nakamura A, Ishii T, Soeno K, Shimada Y (2015) Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis. Plant Cell Rep 34(8):1343–1352

    Article  CAS  PubMed  Google Scholar 

  • Terrile MC, Fiol DF, Casalongué CA (2010) Solanum tuberosum Aux/IAA family: new members and characterization of StIAA1 interacting proteins. Plant Growth Regul 62(2):93–99

    Article  CAS  Google Scholar 

  • Tian C, Jiang Q, Wang F, Wang GL, Xu ZS, Xiong AS (2015) Selection of suitable reference genes for qPCR normalization under abiotic stresses and hormone stimuli in carrot leaves. PLoS One 10(2):e0117569

    Article  PubMed  PubMed Central  Google Scholar 

  • Tivendale ND, Ross JJ, Cohen JD (2014) The shifting paradigms of auxin biosynthesis. Trends Plant Sci 19(1):44–51

    Article  CAS  PubMed  Google Scholar 

  • Wang GL, Sun S, Xing GM, Wu XJ, Wang F, Xiong AS (2015a) Morphological characteristics, anatomical structure, and gene expression: novel insights into cytokinin accumulation during carrot growth and development. PLoS One 10(7):e0134166

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang GL, Xiong F, Que F, Xu ZS, Wang F, Xiong AS (2015b) Morphological characteristics, anatomical structure, and gene expression: novel insights into gibberellin biosynthesis and perception during carrot growth and development. Hortic Res 2:15028

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Liu S, Guan X, Chen L, He Y, Wang J, Lu G (2014) Genome-wide identification and transcriptional profiling analysis of auxin response-related gene families in cucumber. BMC Res Notes 7(1):1–13

    Article  Google Scholar 

  • Xu ZS, Tan HW, Wang F, Hou XL, Xiong AS (2014) CarrotDB: a genomic and transcriptomic database for carrot. Database 2014:bau096

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang YM, Xu CN, Wang BM, Jia JZ (2001) Effects of plant growth regulators on secondary wall thickening of cotton fibres. Plant Growth Regul 35(3):233–237

    Article  CAS  Google Scholar 

  • Zang YX, Lim MH, Park BS, Hong SB, Kim DH (2008) Metabolic engineering of indole glucosinolates in Chinese cabbage plants by expression of Arabidopsis CYP79B2, CYP79B3, and CYP83B1. Mol Cells 25(2):231–241

    CAS  PubMed  Google Scholar 

  • Zhao YD (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant 5(2):334–338

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by the New Century Excellent Talents in University (NCET-11-0670); Jiangsu Natural Science Foundation (BK20130027); Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author contributions

Conceived and designed the experiments: A.S.X., X.J.W. Performed the experiments: X.J.W., G.L.W., X.S., Z.S.X., F.W., A.S.X. Analyzed the data: X.J.W. Contributed reagents/materials/analysis tools: A.S.X. Wrote the paper: X.J.W. Revised the paper: A.S.X., X.J.W. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Sheng Xiong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, XJ., Wang, GL., Song, X. et al. Regulation of auxin accumulation and perception at different developmental stages in carrot. Plant Growth Regul 80, 243–251 (2016). https://doi.org/10.1007/s10725-016-0161-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-016-0161-3

Keywords

Navigation