Skip to main content
Log in

Expression of rice gene OsMSR4 confers decreased ABA sensitivity and improved drought tolerance in Arabidopsis thaliana

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The small heat shock proteins (sHSPs) are most prevalent in plants and are believed to play an important role in stress tolerance. Our microarray and qRT-PCR analyses of rice plants showed that the gene Oryza sativa Multi-Stress-Responsive 4 (OsMSR-4) is induced by heat, drought, and cold in different tissues at various developmental stages. OsMSR-4 encodes a Class III sHSP. Its expression in Arabidopsis thaliana conferred enhanced tolerance to drought accompanied by altered expression of other stress-related genes. Under drought conditions, levels of free proline were higher in transgenic plants than in the wild-type. The transgenics also showed decreased sensitivity to abscisic acid (ABA) during the seed germination and post-germination stages. Our study provides evidence that OsMSR4 has a key role in regulating plant responses to ABA and drought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ACD:

“a-crystallin” domain

MS:

Murashige and Skoog

NLS:

Nuclear localization signal

ORF:

Open reading frame

OsMSR-4 :

Oryza sativa Multi-Stress-Responsive Gene 4

qRT-PCR:

Quantitative real-time PCR

RT-PCR:

Reverse-transcription PCR

sHSPs:

Small heat shock proteins

WT:

Wild type

References

  • Basha E, O’Neill H, Vierling E (2012) Small heat shock proteins and a-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37:106–117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teeare ID (1973) Rapid determination of free Pro for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant response to drought-from the genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Chen RJ, Dong JL, Liu SB, Xu ZJ, Gao XL (2012) isolation of a novel abscisic acid stress ripening (OsASR) gene from rice and analysis of the response of this gene to abiotic stresses. Afr J Biotechnol 11:13873–13881

    CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floraldip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cope LM, Irizarry RA, Jaffee HA, Wu Z, Speed TP (2004) A benchmark for Affymetrix GeneChip expression measures. Bioinformatics 12:323–331

    Article  Google Scholar 

  • Guan JC, Jinn TL, Yeh CH, Feng SP, Chen YM, Lin CY (2004) Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.). Plant Mol Biol 56:795–809

    Article  CAS  PubMed  Google Scholar 

  • Horwitz J (1992) Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA 89:10449–10453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huo HQ, Dahal P, Kunusoth K, McCallum CM, Bradford KJ (2013) Expression of 9-cis-epoxycarotenoid dioxygenase 4 is essential for thermoinhibition of lettuce seed germination but not for seed development or stress tolerance. Plant Cell 25:884–900

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Irrizary RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix Genechip probe level data. Nucleic Acids Res 15:1–8

    Google Scholar 

  • Jiang CH, Xu JY, Zhang H, Zhang X, Shi JL, Li M, Ming F (2009) A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant Cell Environ 32:1046–1059

    Article  CAS  PubMed  Google Scholar 

  • Kishor P, Hong Z, Miao GH, Hu C, Verma D (1995) Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee SC, Hwang BK (2009) Functional roles of the pepper antimicrobial protein gene, CaAMP1, in abscisic acid signaling, and salt and drought tolerance in Arabidopsis. Planta 229:383–391

    Article  CAS  PubMed  Google Scholar 

  • Li H, Gao Y, Xu H, Dai Y, Deng DQ, Chen JM (2013) ZmWRKY33, a WRKY maize transcription factor conferring enhanced salt stress tolerances in Arabidopsis. Plant Growth Regul 70:207–216

    Article  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Gene 22:631–677

    Article  CAS  Google Scholar 

  • Mahmood T, Safdar W, Abbasi BH, Saqlan Naqvi SM (2010) An overview on the small heat shock proteins. Afr J Biotechnol 9:927–949

    Google Scholar 

  • Perez DE, Hoyer JS, Johnson AI, Moody ZR, Lopez J, Kaplinsky NJ (2009) BOBBER1 is a noncanonical Arabidopsis small heat shock protein required for both development and thermotolerance. Plant Physiol 151:241–252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sarkar NK, Kim YK, Grover A (2009) Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genom 10:393–398

    Article  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Siddique M, Port M, Tripp J, Weber C, Zielinski D, Calligaris R, Winkelhaus S, Scharf KD (2003) Tomato heat stress protein Hsp16.1-CIII represents a member of a new class of nucleocytoplasmic small heat stress proteins in plants. Cell Stress Chaperones 8:381–394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swindell WR, Huebner M, Weber AP (2007) Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genom 8:125

    Article  Google Scholar 

  • Trent JD (1996) A review of acquired thermo tolerance, heat-shock proteins, and molecular chaperones in archaea. FEMS Microbiol Rev 18:249–258

    Article  CAS  Google Scholar 

  • Verslues PE, Zhu JK (2007) New developments in abscisic acid perception and metabolism. Curr Opin Plant Biol 10:447–452

    Article  CAS  PubMed  Google Scholar 

  • Wang WX, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang WX, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Waters ER, Lee GJ, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47:325–338

    Article  CAS  Google Scholar 

  • Xue Y, Peng R, Xiong A, Li X, Zha D, Yao Q (2010) Overexpression of heat shock protein gene hsp26 in Arabidopsis thaliana enhances heat tolerance. Biol Plant 54:105–111

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  CAS  PubMed  Google Scholar 

  • Ye SF, Yu SW, Shu LB, Wu JH, AiZ Wu, Luo LJ (2012) Expression profile analysis of 9 heat shock protein genes throughout the life cycle and under abiotic stress in rice. Chin Sci Bull 57:336–343

    Article  CAS  Google Scholar 

  • Yoshiba Y, Nanjo T, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Stress-responsive and developmental regulation of ∆1-pyrroline-5-carboxylate synthetase 1 (P5CS1) gene expression in Arabidopsis thaliana. Biochem Biophys Res Comm 261:766–772

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Liu AL, Chen XB, Zhou XY, Gao GF, Wang WF, Zhang XW (2009) Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. J Plant Physiol 166:851–861

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Liu CF, Liu AL, Zou D, Chen XB (2012) Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. J Plant Physiol 169:628–635

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Science and Technology Key Project of Hu Nan Province, P. R. China (S2011F2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjie Xia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Huang, L., Zhang, X. et al. Expression of rice gene OsMSR4 confers decreased ABA sensitivity and improved drought tolerance in Arabidopsis thaliana . Plant Growth Regul 75, 549–556 (2015). https://doi.org/10.1007/s10725-014-0020-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-014-0020-z

Keywords

Navigation