Skip to main content
Log in

Enhancing Service Offloading for Dense Networks Based on Optimal Stopping Theory in Virtual Mobile Edge Computing

  • Research
  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

The present and next-generation networks of service offloading present exciting issues. The traditional network optimisation techniques still require rigorous heuristic tuning to obtain a good result. Traditional methods employ data as an input and produce solutions that are close to ideal. These methods only operate with tiny networks and exhibit exponential computation times. Thus, we are driven to understand the behaviour of conventional optimisation methods while boosting service quality and meeting next-generation applications. The Optimization problem in Virtual Mobile Edge Computing using Twin Delayed Deep Deterministic Policy Gradient-based Intelligent Computation Offloading (TD3PG-ICO). Optimal Stopping Theory is used in virtual mobile edge computing for the best service offloading (OST). To support the use case, a service offloading protocol is also described. We use Software Defined Networking (SDN) and Network Function Virtualization (NFV) ideas to manage and virtualise network components. To deal with dense Internet of Things (IoT) networks, a TD3PG-OST-based offloading is therefore suggested. There are extensive analyses and comparisons with cutting-edge methods. Results demonstrate the effectiveness of the proposed methods in terms of networking, resource utilisation, and service offloading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Laroui, M., et al.: SO-VMEC: service offloading in virtual mobile edge computing using deep reinforcement learning. Trans. Emerg. Telecommun. Technol. 33(10), e4211 (2022)

    Article  Google Scholar 

  2. Mu, L., et al.: Multi-task offloading based on optimal stopping theory in edge computing empowered internet of vehicles. Entropy 24(6), 814 (2022)

    Article  MathSciNet  Google Scholar 

  3. Ma, K., et al.: Reliability-constrained throughput optimization of industrial wireless sensor networks with energy harvesting relay. IEEE Internet Things J. 8(17), 13343–13354 (2021)

    Article  Google Scholar 

  4. Zheng, C., An, Y., Wang, Z., Wu, H., Qin, X., Eynard, B., ... Zhang, Y.: Hybrid offline programming method for robotic welding systems. Robot. Comput. Integr. Manuf. 73 (2022)

  5. Wang, Q., Chen, S.: Latency-minimum offloading decision and resource allocation for fog-enabled Internet of Things networks. Trans. Emerg. Telecommun. Technol. e3880 (2020)

  6. Chiti, F., Fantacci, R., Picano, B.: A matching game for tasks offloading in integrated edge-fog computing systems. Trans. Emerg. Telecommun. Technol. 31(2), e3718 (2020)

    Article  Google Scholar 

  7. Zheng, C., An, Y., Wang, Z., Qin, X., Eynard, B., Bricogne, M.,... Zhang, Y.: Knowledge-based engineering approach for defining robotic manufacturing system architectures. Int. J. Prod. Res. 61(5), 1436–1454 (2023)

  8. Sun, G., Zhu, G., Liao, D., Yu, H., Du, X.,... Guizani, M.: Cost-efficient service function chain orchestration for low-latency applications in NFV networks. IEEE Syst. J. 13(4), 3877–3888 (2019)

  9. Liyanage, M., Porambage, P., Ding, A.Y., Kalla, A.: Driving forces for Multi-Access Edge Computing (MEC) IoT integration in 5G. ICT Express 7, 127–137 (2021)

    Article  Google Scholar 

  10. Sun, G., Li, Y., Liao, D., Chang, V.: Service function chain orchestration across multiple domains: a full mesh aggregation approach. IEEE Trans. Netw. Service Manag. 15(3), 1175–1191 (2018)

    Article  Google Scholar 

  11. Sun, G., Liao, D., Zhao, D., Xu, Z., Yu, H.: Live migration for multiple correlated virtual machines in cloud-based data centers. IEEE Trans. Services Comput. 11(2), 279–291 (2018)

    Article  Google Scholar 

  12. Lin, Z., Bi S., Zhang, Y. A.: Optimizing AI service placement and computation offloading in mobile edge intelligence systems. In: Proceedings of IEEE Global Communications Conference (GLOBECOM), IEEE, pp. 1–7. (2020)

  13. Zheng, W., Lu, S., Cai, Z., Wang, R., Wang, L.,... Yin, L.: PAL-BERT: an improved question answering model. Comput. Model. Eng. Sci. (2023)

  14. Liu, X., Zhou, G., Kong, M., Yin, Z., Li, X., Yin, L.,... Zheng, W.: Developing multi-labelled corpus of twitter short texts: a semi-automatic method. Systems. 11(8), 390 (2023)

  15. X. Zhu, S. Chen, S. Chen, et al.: Energy and delay co-aware computation offloading with deep learning in fog computing networks. In: Proceedings of IEEE International Performance Computing and Communications Conference (IPCCC), IEEE, pp. 1–6 (2019)

  16. Dong, R., She, C., Hardjawana, W., et al.: Deep learning for hybrid 5G services in mobile edge computing systems: learn from a digital twin. IEEE Trans. Wireless Commun. 18(10), 4692–4707 (2019)

    Article  Google Scholar 

  17. Li, Q., Lin, H., Tan, X., Du, S.: Consensus for multiagent-based supply chain systems under switching topology and uncertain demands. IEEE Trans. Syst. Man Cybern.: Syst. 50(12), 4905–4918 (2020)

    Article  Google Scholar 

  18. Chen, T., Jia, W., Yuan, J., et al.: Continuity and smoothness analysis and possible improvement of traditional reinforcement learning methods. In: Proceedings of IEEE International Conference on Mechatronics and Automation (ICMA), IEEE, pp. 1722–1727 (2020)

  19. Liu, X., Wang, S., Lu, S., Yin, Z., Li, X., Yin, L.,... Zheng, W.: Adapting feature selection algorithms for the classification of chinese texts. Systems 11(9), 483 (2023)

  20. Dai, W., Zhou, X., Li, D., Zhu, S., Wang, X.: Hybrid parallel stochastic configuration networks for industrial data analytics. IEEE Trans. Ind. Inf. 18(4), 2331–2341 (2022)

    Article  Google Scholar 

  21. Fu, F., Zhang, Z., Yu, F.R., et al.: An actor-critic reinforcement learning-based resource management in mobile edge computing systems. Int. J. Mach. Learn. Cybern. 11(8), 1875–1889 (2020)

    Article  Google Scholar 

  22. Ren, Y., Yu, X., Chen, X., et al.: Vehicular network edge intelligent management: a deep deterministic policy gradient approach for service offloading decision. In: Proceedings of International Wireless Communications and Mobile Computing (IWCMC), IEEE, pp. 905–910 (2020)

  23. Wang, Q., Dai, W., Zhang, C., Zhu, J., Ma, X.: A compact constraint incremental method for random weight networks and its application. IEEE Trans. Neural Netw. Learn. Syst. , 2023 (2023)

  24. Wang, Q., Chen, S.: Latency-minimum offloading decision and resource allocation for fog-enabled Internet of Things networks. Trans. Emerg. Telecommun. Technol. 31(12), 1–14 (2020)

    Google Scholar 

  25. Di, Y., Li, R., Tian, H., Guo, J., Shi, B., Wang, Z.,... Liu, Y.: A maneuvering target tracking based on fastIMM-extended Viterbi algorithm. Neural Comput. Appl. (2023)

  26. Xu, X., Shen, B., Ding, S., et al.: Service offloading with deep q-network for digital twinning empowered Internet of Vehicles in edge computing. IEEE Trans. Ind. Inf. 18(2), 1414–1423 (2022)

    Article  Google Scholar 

  27. Li, T., Braud, T., Li, Y., Hui, P.: Lifecycle-aware online video caching. IEEE Trans. Mob. Comput. 20(8), 2624–2636 (2021)

    Article  Google Scholar 

  28. Mou, J., Gao, K., Duan, P., Li, J., Garg, A.,... Sharma, R.: A machine learning approach for energy-efficient intelligent transportation scheduling problem in a real-world dynamic circumstances. IEEE Trans. Intell. Transp. Syst. 24(12), 15527–15539 (2023)

  29. Cao, B., Li, Z., Liu, X., Lv, Z., He, H.: Mobility-aware multiobjective task offloading for vehicular edge computing in digital twin environment. IEEE J. Select. Areas Commun. 41(10), 3046–3055 (2023)

    Article  Google Scholar 

  30. Xie, Y., Wang, X., Shen, Z., Sheng, Y., Wu, G.: A two-stage estimation of distribution algorithm with heuristics for energy-aware cloud workflow scheduling. IEEE Trans. Services Comput. 16(6), 4183–4197 (2023)

    Article  Google Scholar 

  31. Cao, B., Sun, Z., Zhang, J., Gu, Y.: Resource allocation in 5G IoV architecture based on SDN and fog-cloud computing. IEEE Trans. Intell. Transp. Syst. 22(6), 3832–3840 (2021)

    Article  Google Scholar 

  32. Cao, B., Zhang, J., Liu, X., Sun, Z., Cao, W., Nowak, R. M.,... Lv, Z.: Edge–cloud resource scheduling in space–air–ground-integrated networks for internet of vehicles. IEEE Internet Things J. 9(8), 5765–5772 (2022)

  33. Chen, Z., Gao, L.: CURSOR: configuration update synthesis using order rules. Paper presented at the IEEE INFOCOM 2023 - IEEE Conference on Computer Communications (2023)

  34. Lu, J., Osorio, C.: A probabilistic traffic-theoretic network loading model suitable for large-scale network analysis. Transport. Sci. 52(6), 1509–1530 (2018)

    Article  Google Scholar 

  35. Wu, Q., Fang, J., Zeng, J., Wen, J., Luo, F.: Monte Carlo simulation-based robust workflow scheduling for spot instances in cloud environments. Tsinghua Sci. Technol. 29(1), 112–126 (2024)

    Article  Google Scholar 

  36. Sun, Y., Peng, Z., Hu, J., Ghosh, B.: K, Event-triggered critic learning impedance control of lower limb exoskeleton robots in interactive environments. Neurocomputing 564, 126963 (2024)

    Article  Google Scholar 

  37. Ma, B., Liu, Z., Dang, Q., Zhao, W., Wang, J., Cheng, Y.,... Yuan, Z.: Deep Reinforcement learning of UAV tracking control under wind disturbances environments. IEEE Trans. Instrum. Meas. 72 (2023)

  38. Chen, J., Wang, Q., Peng, W., Xu, H., Li, X.,... Xu, W.: Disparity-based multiscale fusion network for transportation detection. IEEE Trans. Intell. Transp. Syst. 23(10), 18855–18863 (2022)

  39. Li, K., Ji, L., Yang, S., Li, H., Liao, X.: Couple-group consensus of cooperative-competitive heterogeneous multiagent systems: a fully distributed event-triggered and pinning control method. IEEE Trans. Cybern. 52(6), 4907–4915 (2022)

    Article  Google Scholar 

  40. Abedi, M., Tan, X., Klausner, J. F., Murillo, M. S., Benard, A.: A comparison of the performance of a data-driven surrogate model of a dehumidifier with mathematical model of humidification-dehumidification system. In: AIAA SCITECH 2023 Forum, p. 2329. (2023)

  41. RashidiNasab, A., Elzarka, H.: Optimizing machine learning algorithms for improving prediction of bridge deck deterioration: a case study of Ohio bridges. Buildings 13(6), 1517 (2023)

    Article  Google Scholar 

  42. Abbasi, M., Manshaei, M. H., Rahman, M. A., Akkaya, K, Jadliwala, M.: On algorand transaction fees: challenges and mechanism design. In: ICC 2022-IEEE International Conference on Communications. IEEE, pp. 5403–5408. (2022)

  43. Xiao, Y., Konak, A.: The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion. Transp. Res. E Logist. Transp. Rev. 88, 146–166 (2016)

    Article  Google Scholar 

  44. Hu, F., Qiu, L., Wei, S., Zhou, H., Bathuure, I. A.,... Hu, H.: The spatiotemporal evolution of global innovation networks and the changing position of China: a social network analysis based on cooperative patents. R D Manag (2023)

  45. Xu, X., Lin, Z., Li, X., Shang, C., Shen, Q.: Multi-objective robust optimisation model for MDVRPLS in refined oil distribution. Int. J. Prod. Res. 60(22), 6772–6792 (2022)

    Article  Google Scholar 

  46. Xu, X., Wei, Z.: Dynamic pickup and delivery problem with transshipments and LIFO constraints. Comput. Ind. Eng. 175,(2023)

  47. Reinhardt, A., Baumann, P., Burgstahler, D., et al.: On the accuracy of appliance identification based on distributed load metering data. In: IEEE Sustainable Internet and ICT for Sustainability (SustainIT), pp. 1–9 (2012)

  48. Xu, X., Liu, W., Yu, L.: Trajectory prediction for heterogeneous traffic-agents using knowledge correction data-driven model. Inf. Sci. 608, 375–391 (2022)

    Article  Google Scholar 

  49. Dai, X., Xiao, Z., Jiang, H., Lui, J.C.S.: UAV-assisted task offloading in vehicular edge computing networks. IEEE Trans. Mob. Comput. (2023)

  50. Jiang, H., Dai, X., Xiao, Z., Iyengar, A. K.: Joint task offloading and resource allocation for energy-constrained mobile edge computing. IEEE Trans. Mob. Comput. (2022)

  51. Xiao, Z., Shu, J., Jiang, H., Min, G., Chen, H.,... Han, Z.: Perception task offloading with collaborative computation for autonomous driving. IEEE J. Select. Areas Commun. 41(2), 457–473 (2023)

  52. Xu, C., Zheng, G., Zhao, X.: Energy-minimization task offloading and resource allocation for mobile edge computing in NOMA heterogeneous networks. IEEE Trans. Veh. Technol. 69(12), 16001–16016 (2020)

    Article  Google Scholar 

  53. Xiao, Z., Shu, J., Jiang, H., Lui, J. C. S., Min, G., Liu, J.,... Dustdar, S.: Multi-objective parallel task offloading and content caching in D2D-aided MEC networks. IEEE Trans. Mobile Comput. (2022)

Download references

Funding

This research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

Qiang Fu: Conceptualization, Methodology, Formal analysis, Supervision, Writing—original draft, Writing—review & editing.

Tao Yang: Writing—original draft, Writing—review & editing, Investigation, Data Curation, Validation, Resources, Writing—review & editing.

Corresponding author

Correspondence to Qiang Fu.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Q., Yang, T. Enhancing Service Offloading for Dense Networks Based on Optimal Stopping Theory in Virtual Mobile Edge Computing. J Grid Computing 22, 47 (2024). https://doi.org/10.1007/s10723-024-09765-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10723-024-09765-3

Keywords

Navigation