Skip to main content
Log in

Novel Transformation Deep Learning Model for Electrocardiogram Classification and Arrhythmia Detection using Edge Computing

  • Research
  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

The diagnosis of the cardiovascular disease relies heavily on the automated classification of electrocardiograms (ECG) for arrhythmia monitoring, which is often performed using machine learning (ML) algorithms. However, current ML algorithms are typically deployed using cloud-based inferences, which may not meet the reliability and security requirements for ECG monitoring. A newer solution, edge inference, has been developed to address speed, security, connection, and reliability issues. This paper presents an edge-based algorithm that combines continuous wavelet transform (CWT), and short-time Fourier transform (STFT), in a hybrid convolutional neural network (CNN) and Long Short-Term Memory (LSTM) model techniques for real-time ECG classification and arrhythmia detection. The algorithm incorporates an STFT CWT-based 1D convolutional (Conv1D) layer as a Finite Impulse Response (FIR) filter to generate the spectrogram of the input ECG signal. The output feature maps from the Conv1D layer are then reshaped into a 2D heart map image and fed into a hybrid convolutional neural network (2D-CNN) and Long Short-Term Memory (LSTM) classification model. The MIT-BIH arrhythmia database is used to train and evaluate the model. Using a cloud platform, four model versions are learned, considered, and optimized for edge computing on a Raspberry Pi device. Techniques such as weight quantization and pruning enhance the algorithms created for edge inference. The proposed classifiers can operate with a total target size of 90 KB, an overall inference time of 9 ms, and higher memory use of 12 MB while achieving up to 99.6% classification accuracy and a 99.88% F1-score at the edge. Thanks to its results, the suggested classifier is highly versatile and can be used for arrhythmia monitoring on various edge devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Madan, P., Singh, V., Singh, D.P., Diwakar, M., Pant, B., Kishor, A.: A hybrid deep learning approach for ECG-based arrhythmia classification. Bioengineering 9(4), 152 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  2. Senturk, Z.K.: From signal to image: An effective preprocessing to enable deep learning-based classification of ECG. Mater. Today. Proc. 81, 1–9 (2022)

    Google Scholar 

  3. Farag, M.M.: A Self-Contained STFT CNN for ECG Classification and Arrhythmia Detection at the Edge. IEEE Access 10, 94469–94486 (2022)

    Article  Google Scholar 

  4. Savalia, S., Emamian, V.: Cardiac arrhythmia classification by multi-layer perceptron and convolution neural networks. Bioengineering 5(2), 35 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zeng, Q., Bie, B., Guo, Q., Yuan, Y., Han, Q., Han, X., Zhou, X.: Hyperpolarized Xe NMR signal advancement by metal-organic framework entrapment in aqueous solution. Proc. Natl. Acad. Sci. 117(30), 17558–17563 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, X., Huang, D., Li, H., Zhang, Y., Xia, Y., Liu, J.: Self-training maximum classifier discrepancy for EEG emotion recognition. Intell. Technol, CAAI Trans (2023). https://doi.org/10.1049/cit2.12174

    Book  Google Scholar 

  7. Raju, K.B., Dara, S., Vidyarthi, A., Gupta, V.M., Khan, B.: Smart heart disease prediction system with IoT and fog computing sectors enabled by cascaded deep learning model. Comput. Intell. Neurosci. 2022(1), 22 (2022)

    Google Scholar 

  8. Verma, P., Tiwari, R., Hong, W.C., Upadhyay, S., Yeh, Y.H.: FETCH: a deep learning-based fog computing and IoT Integrated environment for healthcare monitoring and diagnosis. IEEE Access 10, 12548–12563 (2022)

    Article  Google Scholar 

  9. Tripathy, S.S., Imoize, A.L., Rath, M., Tripathy, N., Bebortta, S., Lee, C.C., Chen, T.Y., Ojo, S., Isabona, J., Pani, S.K.: A Novel Edge-Computing-Based Framework for an Intelligent Smart Healthcare System in Smart Cities. Sustainability 15(1), 735 (2022)

    Article  Google Scholar 

  10. Zhuang, Y., Jiang, N., Xu, Y., Xiangjie, K., Kong, X.: Progressive Distributed and Parallel Similarity Retrieval of Large CT Image Sequences in Mobile Telemedicine Networks. Wirel. Commun. Mob. Comput. 2022, 6458350 (2022)

    Article  Google Scholar 

  11. Wasimuddin, M., Elleithy, K., Abuzneid, A.S., Faezipour, M., Abuzaghleh, O.: Stages-based ECG signal analysis from traditional signal processing to machine learning approaches: a survey. IEEE Access 8, 177782–177803 (2020)

    Article  Google Scholar 

  12. Ebrahimi, Z., Loni, M., Daneshtalab, M., Gharehbaghi, A.: A review on deep learning methods for ECG arrhythmia classification. Expert Syst. Appl. X 7, 100033 (2020)

    Google Scholar 

  13. Hu, Z., Ren, L., Wei, G., Qian, Z., Liang, W., Chen, W., Wang, K.: Energy Flow and Functional Behavior of Individual Muscles at Different Speeds During Human Walking. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 294–303 (2023)

    Article  PubMed  Google Scholar 

  14. Yang, S., Li, Q., Li, W., Li, X., Liu, A.: Dual-Level representation enhancement on characteristic and context for image-text retrieval. IEEE Trans. Circuits. Syst. Video. Technol. 32(11), 8037–8050 (2022)

    Article  Google Scholar 

  15. Liu, A., Zhai, Y., Xu, N., Nie, W., Li, W., Zhang, Y.: Region-Aware image captioning via interaction learning. IEEE Trans. Circuits. Syst. Video. Technol. 32(6), 3685–3696 (2022)

    Article  Google Scholar 

  16. Chen, P., Liu, H., Xin, R., Carval, T., Zhao, J., Xia, Y., Zhao, Z.: Effectively detecting operational anomalies in large-scale IoT data infrastructures by using A GAN-Based predictive model. Comput. J. 65(11), 2909–2925 (2022)

    Article  Google Scholar 

  17. Ding, Y., Zhang, W., Zhou, X., Liao, Q., Luo, Q., Ni, L.M.: FraudTrip: Taxi Fraudulent Trip Detection From Corresponding Trajectories. IEEE Internet Things J. 8(16), 12505–12517 (2021)

    Article  Google Scholar 

  18. Alqudah, A.M., Qazan, S., Al-Ebbini, L., Alquran, H. and Qasmieh, I.A.: ECG heartbeat arrhythmias classification: A comparison study between different types of spectrum representation and convolutional neural networks architectures. J. Ambient Intell. Human. Comput. pp.1–31 (2021)

  19. Cheng, B., Zhu, D., Zhao, S., Chen, J.: Situation-Aware IoT Service Coordination Using the Event-Driven SOA Paradigm. IEEE Trans. Netw. Service Manag. 13(2), 349–361 (2016)

    Article  Google Scholar 

  20. Zhuang, Y., Chen, S., Jiang, N., Hu, H.: An Effective WSSENet-Based Similarity Retrieval Method of Large Lung CT Image Databases. KSII Trans. Internet Inf. Syst. 16(7), 2359–2376 (2022)

    Google Scholar 

  21. Dang, W., Xiang, L., Liu, S., Yang, B., Liu, M., Yin, Z., Zheng, W.: A Feature matching method based on the convolutional neural network. J. Imaging Sci. Technol (2023)

  22. Liu, M., Zhang, X., Yang, B., Yin, Z., Liu, S., Yin, L., Zheng, W.: Three-Dimensional modeling of heart soft tissue motion. Appl. Sci. 13(4), 2490 (2023)

    Article  Google Scholar 

  23. Lu, S., Liu, S., Hou, P., Yang, B., Liu, M., Yin, L., Zheng, W.: Soft tissue feature tracking based on deep matching network. Comput. Model. Eng. Sci. 136(1), 363–379 (2023)

    Google Scholar 

  24. Wang, Y., Zhai, W., Yang, L., Cheng, S., Cui, W., Li, J.: Establishments and Evaluations of Post-Operative Adhesion Animal Models. Adv. Ther. 6, 2200297 (2023)

    Article  Google Scholar 

  25. Zhou, X., Zhang, L.: SA-FPN: An effective feature pyramid network for crowded human detection. Appl. Intell. 52(11), 12556–12568 (2022)

    Article  Google Scholar 

  26. Xia, Y., Ding, L., Tang, Z.: Interaction effects of multiple input parameters on the integrity of safety instrumented systems with the k-out-of-n redundancy arrangement under uncertainties. Qual. Reliab. Eng. Int. 39(6), 2515–2536 (2023)

    Article  Google Scholar 

  27. Diker, A., Avci, E., Tanyildizi, E., Gedikpinar, M.: A novel ECG signal classification method using DEA-ELM. Med. Hypotheses. 136, 109515 (2020)

    Article  PubMed  Google Scholar 

  28. Dai, X., Xiao, Z., Jiang, H., Alazab, M., Lui, J.C.S., Dustdar, S., Liu, J.: Task Co-Offloading for D2D-Assisted Mobile Edge Computing in Industrial Internet of Things. IEEE Trans. Industr. Inf. 19(1), 480–490 (2023)

    Article  Google Scholar 

  29. Jiang, H., Dai, X., Xiao, Z., Iyengar, A.K.: Joint Task Offloading and Resource Allocation for Energy-Constrained Mobile Edge Computing. IEEE Trans. Mob. Comput. 22(7), 4000–4015 (2022)

    Article  Google Scholar 

  30. Hammad, M., Abd El-Latif, A.A., Hussain, A., Abd El-Samie, F.E., Gupta, B.B., Ugail, H., Sedik, A.: Deep learning models for arrhythmia detection in IoT healthcare applications. Comput. Electr. Eng. 100, 108011 (2022)

    Article  Google Scholar 

  31. Ruiz, J.T., Pérez, J.D.B. and Blázquez, J.R.B.: Arrhythmia detection using convolutional neural models. In Distributed Computing and Artificial Intelligence, 15th International Conference 15 (pp. 120–127). Springer International Publishing (2019)

  32. Dai, X., Xiao, Z., Jiang, H., & Lui, J. C. S.: UAV-Assisted task offloading in vehicular edge computing networks. IEEE Trans. Mob. Comput (2023)

  33. Wang, Y., Han, X., & Jin, S.: MAP based modeling method and performance study of a task offloading scheme with time-correlated traffic and VM repair in MEC systems. Wirel.Netw (2022)

  34. Li, J., Deng, Y., Sun, W., Li, W., Li, R., Li, Q., Liu, Z.: Resource orchestration of cloud-edge–based smart grid fault detection. ACM Trans. Sen. Netw. 18(3), 1–26 (2022)

    Article  Google Scholar 

  35. Sun, L., Zhang, M., Wang, B., & Tiwari, P.: Few-shot class-incremental learning for medical time series classification. IEEE J. Biomed. Health Inform (2023)

  36. Mienye, I.D., Sun, Y.: Improved heart disease prediction using particle swarm optimization based stacked sparse autoencoder. Electronics 10(19), 2347 (2021)

    Article  Google Scholar 

  37. Marinho, L.B., MM de Nascimento, N., Souza, J.W.M., Gurgel, M.V., Rebouças Filho, P.P. and de Albuquerque, V.H.C.: A novel electrocardiogram feature extraction approach for cardiac arrhythmia classification. Future Generat. Comput. Syst. 97, pp. 564-577 (2019)

  38. Panganiban, E.B., Paglinawan, A.C., Chung, W.Y., Paa, G.L.S.: ECG diagnostic support system (EDSS): A deep learning neural network based classification system for detecting ECG abnormal rhythms from a low-powered wearable biosensors. Sens. Bio-Sens. Res. 31, 100398 (2021)

    Article  Google Scholar 

  39. Ortiz-Echeverri, C.J., Rodríguez-Reséndiz, J., Garduño-Aparicio, M.: An approach to STFT and CWT learning through music hands-on labs. Comput. Appl. Eng. Educ. 26(6), 2026–2035 (2018)

    Article  Google Scholar 

  40. Lei, X., Zhang, Z., Dong, P.: Dynamic path planning of unknown environment based on deep reinforcement learning. J. Robot. 2018(1), 1–10 (2018)

    Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

Yibo Han: Conceptualization, Methodology, Formal analysis, Supervision, Writing—original draft, Writing—review & editing.

Pu Han: Writing—original draft, Writing—review & editing.

Bo Yuan: Investigation, Data Curation, Validation, Resources, Writing—review & editing.

Zheng Zhang: Project administration, Investigation, Writing—review & editing.

Lu Liu: Software, Visualization, Writing—original draft.

John Panneerselvam: Investigation, Data Curation, Validation, Resources, Writing—review & editing.

Corresponding author

Correspondence to Zheng Zhang.

Ethics declarations

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Han, P., Yuan, B. et al. Novel Transformation Deep Learning Model for Electrocardiogram Classification and Arrhythmia Detection using Edge Computing. J Grid Computing 22, 7 (2024). https://doi.org/10.1007/s10723-023-09717-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10723-023-09717-3

Keywords

Navigation