Skip to main content
Log in

Secure Authentication and Reliable Cloud Storage Scheme for IoT-Edge-Cloud Integration

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

The Internet of Things (IoT) devices are used in almost every aspect of life to automate routine or critical tasks with great precision. The IoT nodes, users, edge nodes, cloud resources, and the connected network are critical components of IoT-Edge-Cloud integration. Any unauthorized access to these resources may halt or bring down the whole IoT infrastructure leading to a severe impact. Hence, authenticating and authorizing these components is essential. Thus, this paper proposes an authentication scheme to securely integrates users, IoT nodes, Edge node, and the cloud infrastructure. We also proposed a reliable cloud data storage and retrieval mechanism using an Erasure Coding strategy in order to store the data generated by IoT infrastructure. We validate the proposed authentication protocols using the well-known and widely used AVISPA simulator tool. The results demonstrate that the proposed authentication protocols are secure against a wide range of security attacks. Further, a comprehensive security analysis was carried out to demonstrate that our protocols are secure against possible attacks and include essential security features. The proposed scheme provides mutual authentication, accessibility, confidentiality, scalability, secure storage, and a secure communication mechanism in the integrated IoT-Edge-Cloud infrastructure with reliable cloud storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon, N., Edmonds, J., Luby, M.: Linear time erasure codes with nearly optimal recovery. In: Proceedings of IEEE 36th Annual Foundations of Computer Science, pp. 512–519 (1995)

  2. Amin, R., Biswas, G.: A secure light weight scheme for user authentication and key agreement in multi-gateway based wireless sensor networks. Ad Hoc Networks 36, 58–80 (2016)

    Article  Google Scholar 

  3. Amin, R., Islam, S.H., et al.: Design of an anonymity-preserving three-factor authenticated key exchange protocol for wireless sensor networks. Compu. Netw. 101, 42–62 (2016). Industrial Technologies and Applications for the Internet of Things

  4. Amin, R., Kumar, N., Biswas, G., Iqbal, R., Chang, V.: A light weight authentication protocol for IoT-enabled devices in distributed cloud computing environment. Futur. Gener. Comput. Syst. 78, 1005–1019 (2018)

    Article  Google Scholar 

  5. Amin, R., Kunal, S., Saha, A., Das, D., Alamri, A.: CFSec: Password based secure communication protocol in cloud-fog environment. J. Parallel. Distrib. Comput. 140, 52–62 (2020)

    Article  Google Scholar 

  6. Arezou Ostad-Sharif, H.A., et al.: Three party secure data transmission in IoT networks through design of a lightweight authenticated key agreement scheme. Futur. Gener. Comput. Syst. 100, 882–892 (2019)

    Article  Google Scholar 

  7. Armando, A., Basin, D., et al.: The AVISPA tool for the automated validation of internet security protocols and applications. In: International conference on computer aided verification, pp. 281–285. Springer (2005)

  8. Armando, A., Basin, D., et al.: Span plus avispa. (2017). https://people.irisa.fr/Thomas.Genet/span/

  9. Blomer, J., Kalfane, M., Karp, R., Karpinski, M., Luby, M., Zuckerman, D.: An xor-based erasure-resilient coding scheme (1999)

  10. Chaudhary, A., Peddoju, S.K.: The role of IoT-based devices for the better world. In: Mishra, D.K., Azar, A.T., Joshi, A. (eds.) Information and Communication Technology, pp. 299–309. Springer Singapore, Singapore (2018)

    Chapter  Google Scholar 

  11. Chaudhary, A., Peddoju, S.K., Kadarla, K.: Study of internet-of-things messaging protocols used for exchanging data with external sources. In: 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp. 666–671 (2017)

  12. Chaudhary, A., Peddoju, S.K., Peddoju, S.K.: Cloud based wireless infrastructure for health monitoring. Virtual and Mobile Healthcare: Breakthroughs in Research and Practice pp. 34–55 (2020)

  13. Chen, T.H., Shih, W.K.: A robust mutual authentication protocol for wireless sensor networks. ETRI J. 32(5), 704–712 (2010)

    Article  Google Scholar 

  14. Chen, Y., Ge, Y., Wang, Y., Zeng, Z.: An improved three-factor user authentication and key agreement scheme for wireless medical sensor networks. IEEE Access 7, 85440–85451 (2019)

    Article  Google Scholar 

  15. Chouhan, V., Peddoju, S.K.: Investigation of optimal data encoding parameters based on user preference for cloud storage. IEEE Access 8, 75105–75118 (2020)

    Article  Google Scholar 

  16. Chouhan, V., Peddoju, S.K.: Reliable verification of distributed encoded data fragments in the cloud. J. Ambient Intell. Humanized Comput. 1–17. (2020)

  17. Das, A.K., Sharma, P., et al.: A dynamic password-based user authentication scheme for hierarchical wireless sensor networks. J. Netw. Comput. Appl. 35(5), 1646-1656 (2012)

    Article  Google Scholar 

  18. Das, M.L.: Two-factor user authentication in wireless sensor networks. IEEE Trans. Wirel. Commun. 8(3), 1086–1090 (2009)

    Article  Google Scholar 

  19. Farash, M.S., Turkanović, M., Kumari, S., Hölbl, M.: An efficient user authentication and key agreement scheme for heterogeneous wireless sensor network tailored for the internet of things environment. Ad Hoc Networks 36, 152–176 (2016)

    Article  Google Scholar 

  20. Foundation, R.P.: Raspberry pi 4 tech specs. (2022). https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/

  21. Greenan, K.M., Miller, E.L., Wylie, J.J.: Reliability of flat xor-based erasure codes on heterogeneous devices. In: 2008 IEEE International Conference on Dependable Systems and Networks With FTCS and DCC (DSN), pp. 147–156. IEEE (2008)

  22. He, D., Gao, Y., Chan, S., Chen, C., Bu, J.: An enhanced two-factor user authentication scheme in wireless sensor networks. Ad-Hoc Sens. Wirel. Netw. 10(4), 361–371 (2010). Cited By 211

  23. Huang, C., Simitci, H., Xu, Y., Ogus, A., Calder, B., Gopalan, P., Li, J., Yekhanin, S.: Erasure coding in windows azure storage. In: 2012 USENIX Annual Technical Conference (USENIX ATC 12), pp. 15–26 (2012)

  24. Huang, H., Lu, S., Wu, Z., Wei, Q.: An efficient authentication and key agreement protocol for IoT-enabled devices in distributed cloud computing architecture. EURASIP J. Wirel. Commun. Netw. Conf. 2021(1), 150 (2021). https://doi.org/10.1186/s13638-021-02022-1

    Article  Google Scholar 

  25. Huang, H.F., Chang, Y.F., Liu, C.H.: Enhancement of two-factor user authentication in wireless sensor networks. In: 2010 Sixth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 27–30 (2010)

  26. Jiang, Q., Zeadally, S., Ma, J., He, D.: Lightweight three-factor authentication and key agreement protocol for internet-integrated wireless sensor networks. IEEE Access 5, 3376–3392 (2017)

    Article  Google Scholar 

  27. Kadarla, K., Sharma, S., Bhardwaj, T., Chaudhary, A.: A simulation study of response times in cloud environment for IoT-based healthcare workloads. In: 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp. 678–683 (2017)

  28. Kang, B., Han, Y., Qian, K., Du, J.: Analysis and improvement on an authentication protocol for IoT-enabled devices in distributed cloud computing environment. Math. Probl. Eng. 2020, 1970798 (2020). https://doi.org/10.1155/2020/1970798

    Article  MathSciNet  MATH  Google Scholar 

  29. Kumar, D.: A secure and efficient user authentication protocol for wireless sensor network. Multimedia Tools Appl. 80(18), 27131–27154 (2021)

    Article  Google Scholar 

  30. Kumar, P., Om, H.: A conditional privacy-preserving and desynchronization-resistant authentication protocol for vehicular ad hoc network. J. Supercomput. 1–32 (2022)

  31. Li, J., Li, B.: Beehive: erasure codes for fixing multiple failures in distributed storage systems. IEEE Trans. Parallel Distrib. Syst. 28(5), 1257–1270 (2017)

    Article  Google Scholar 

  32. Li, L.H., Lin, L.C., et al.: A remote password authentication scheme for multiserver architecture using neural networks. IEEE Trans. Neural. Netw. 12(6), 1498–1504 (2001)

    Article  Google Scholar 

  33. Mishra, D., Vijayakumar, P., Sureshkumar, V., Amin, R., Islam, S.H., Gope, P.: Efficient authentication protocol for secure multimedia communications in IoT-enabled wireless sensor networks. Multimedia Tools Appl. 77(14), 18295–18325 (2018). https://doi.org/10.1007/s11042-017-5376-4

    Article  Google Scholar 

  34. Mo, J., Hu, Z., Shen, W.: A provably secure three-factor authentication protocol based on chebyshev chaotic mapping for wireless sensor network. IEEE Access 10, 12137–12152 (2022)

    Article  Google Scholar 

  35. Nyang, D., Lee, M.K.: Improvement of Das’s two-factor authentication protocol in wireless sensor networks. IACR Cryptol. ePrint Arch. 2009, 631 (2009)

    Google Scholar 

  36. Rashmi, K., Shah, N.B., et al.: A “hitchhiker’s’’ guide to fast and efficient data reconstruction in erasure-coded data centers. SIGCOMM Comput. Commun. Rev. 44(4), 331–342 (2014)

    Article  Google Scholar 

  37. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind. Appl. Math. 8(2), 300–304 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schnjakin, M., Metzke, T., Meinel, C.: Applying erasure codes for fault tolerance in Cloud-RAID. In: 2013 IEEE 16th International Conference on Computational Science and Engineering, pp. 66–75. IEEE (2013)

  39. Shahidinejad, A., et al.: Light-edge: A lightweight authentication protocol for IoT devices in an Edge-Cloud Environment. IEEE Consum. Electron. Mag. 1–1 (2021)

  40. Shukla, S., Patel, S.J.: A novel ecc-based provably secure and privacy-preserving multi-factor authentication protocol for cloud computing. Computing 104(5), 1173–1202 (2022). https://doi.org/10.1007/s00607-021-01041-6

    Article  MathSciNet  MATH  Google Scholar 

  41. Srinivas, J., Mukhopadhyay, S., Mishra, D.: Secure and efficient user authentication scheme for multi-gateway wireless sensor networks. Ad Hoc Networks 54, 147–169 (2017)

    Article  Google Scholar 

  42. Stergiou, C., Psannis, K.E., Kim, B.G., Gupta, B.: Secure integration of IoT and cloud computing. Futur. Gener. Comput. Syst. 78, 964–975 (2018)

    Article  Google Scholar 

  43. Systems, E.: ESP-NOW (2022). https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_now.html?highlight=esp_now_set_pmk#security

  44. Systems, E.: Esp32 series of modules- esp32-wroom series. (2022). https://www.espressif.com/en/products/modules/esp32

  45. Turkanovic, M., Holbl, M.: An improved dynamic password-based user authentication scheme for hierarchical wireless sensor networks. Elektronika ir Elektrotechnika 19(6), 109–116 (2013)

    Article  Google Scholar 

  46. Turkanović, M., Brumen, B., Hölbl, M.: A novel user authentication and key agreement scheme for heterogeneous ad hoc wireless sensor networks, based on the internet of things notion. Ad Hoc Netw. 20, 96–112 (2014)

    Article  Google Scholar 

  47. Wang, C., Wang, D., et al.: Understanding node capture attacks in user authentication schemes for wireless sensor networks. IEEE Trans. Dependable Secure Comput. 1–1 (2020)

  48. Weatherley, R.: Arduino cryptography library. (2020). https://rweather.github.io/arduinolibs/index.html

  49. Weatherspoon, H., Kubiatowicz, J.D.: Erasure coding vs. replication: A quantitative comparison. In: International Workshop on Peer-to-Peer Systems, pp. 328–337. Springer (2002)

  50. Woitaszek, M., Tufo, H.M.: Tornado codes for maid archival storage. In: 24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007), pp. 221–226. IEEE (2007)

  51. Wolfe, M.: Mbed TLS (2016). https://github.com/wolfeidau/mbedtls. Accessed 2022

  52. Wu, F., Li, X., Sangaiah, A.K., Xu, L., Kumari, S., Wu, L., Shen, J.: A lightweight and robust two-factor authentication scheme for personalized healthcare systems using wireless medical sensor networks. Futur. Gener. Comput. Syst. 82, 727–737 (2018). https://doi.org/10.1016/j.future.2017.08.042. (https://www.sciencedirect.com/science/article/pii/S0167739X1730523X)

    Article  Google Scholar 

  53. Wu, F., Li, X., et al.: A novel three-factor authentication protocol for wireless sensor networks with IoT notion. IEEE Syst. J. 15(1), 1120–1129 (2021)

  54. Wu, T.Y., Kong, F., Meng, Q., Kumari, S., Chen, C.M.: Rotating behind security: An enhanced authentication proto-col for IoT-enabled devides in distributed cloud computing architecture. (2022). https://doi.org/10.21203/rs.3.rs-1554621/v1

  55. Wu, T.Y., Yang, L., Lee, Z., Chu, S.C., Kumari, S., Kumar, S.: A provably secure three-factor authentication protocol for wireless sensor networks. Wirel. Commun. Mob. Comput. 2021 (2021)

  56. Wu, T.Y., Yang, L., Luo, J.N., Wu, M.-T.J.: A provably secure authentication and key agreement protocol in cloud-based smart healthcare environments. Secur. Commun, Netw (2021)

    Book  Google Scholar 

  57. Wylie, J.J., Swaminathan, R.: Determining fault tolerance of xor-based erasure codes efficiently. In: 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’07), pp. 206–215. IEEE (2007)

  58. Xue, K., Hong, P., et al.: A lightweight dynamic pseudonym identity based authentication and key agreement protocol without verification tables for multi-server architecture. J. Comput. Syst. Sci. 80(1), 195–206 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  59. Xue, K., Ma, C., Hong, P., Ding, R.: A temporal-credential-based mutual authentication and key agreement scheme for wireless sensor networks. J. Netw. Comput. Appl. 36(1), 316–323 (2013)

    Article  Google Scholar 

  60. Yuan, J., Jiang, C., Jiang, Z.: A biometric-based user authentication for wireless sensor networks. Wuhan University J. Natl. Sci. 15(3), 272–276 (2010)

    Article  Google Scholar 

  61. Zargar, S., Shahidinejad, A., Ghobaei-Arani, M.: A lightweight authentication protocol for IoT-based cloud environment. Int. J. Commun. Syst. 34(11), e4849 (2021)

    Article  Google Scholar 

  62. Zhou, L., Li, X., Yeh, K.H., Su, C., Chiu, W.: Lightweight IoT-based authentication scheme in cloud computing circumstance. Futur. Gener. Comput. Syst. 91, 244–251 (2019). https://doi.org/10.1016/j.future.2018.08.038. (https://www.sciencedirect.com/science/article/pii/S0167739X18307878)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Chaudhary.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, A., Peddoju, S.K. & Chouhan, V. Secure Authentication and Reliable Cloud Storage Scheme for IoT-Edge-Cloud Integration. J Grid Computing 21, 35 (2023). https://doi.org/10.1007/s10723-023-09672-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10723-023-09672-z

Keywords

Navigation