Skip to main content
Log in

Genetic diversity of wild Camellia oleifera in northern China revealed by simple sequence repeat markers

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Camellia oleifera Abel., as one of the four major woody oilseeds, has a high economic value, and the wild C. oleifera genes, whose distribution area is located at the northern edge, are abundant and are valuable resources for C. oleifera breeding. In this study, a total of 341 wild C. oleifera populations were sampled from 11 different localitions in Xinxian County, the hinterland of the Dabie Mountains in the northern margin of the distribution of C. oleifera in China, and 16 pairs of simple sequence repeat (SSR) molecular markers were used to analyse the genetic diversity. Using these 16 pairs of primers to detect the genetic diversity of the wild C. oleifera population, 174 alleles were amplified. The average number of alleles (Na) was 10.875, the average expected heterozygosity (He) was 0.739, the observed heterozygosity (Ho) was 0.718, and the average polymorphic information index (PIC) was 0.739. The 11 wild C. oleifera populations in Xinxian County had high genetic diversity, and the average expected heterozygosity (He) among populations was 0.735. The molecular variance showed that the genetic variation mainly came from within the population, accounting for 88.21% of the total variation. The genetic differentiation coefficient Fst between populations was small, with an average of only 0.04. According to the results of Structure and principal cordinate analysis (PCoA) and cluster analysis, these 11 populations could be roughly divided into two categories. The Mantel test preferentially clustered some populations close to each other, but there was no significant correlation between genetic distance and geographical distance. We provides a theoretical basis for the rational development and utilisation of wild C. oleifera resources in the future and provide a scientific and technological method for future breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bandupriya HDD, Perera SACN, Ranasinghe CS et al (2022) Physiological, biochemical and molecular evaluation of micropropagated and seed-grown coconut (Cocos nucifera L.) palms. Trees 36:127–138

    Article  CAS  Google Scholar 

  • Blacket MJ, Robin C, Good RT et al (2012) Universal primers for fluorescent labelling of PCR fragments—an efficient and cost-effective approach to genotyping by fluorescence. Mol Ecol Resour 12:456–463

    Article  CAS  PubMed  Google Scholar 

  • Bruvo R, Michiels NK, D’Souza TG, Schulenburg H (2004) A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level: microsatellite distances in polyploids. Mol Ecol 13:2101–2106

    Article  CAS  PubMed  Google Scholar 

  • Cavers S, Degen B, Caron H et al (2005) Optimal sampling strategy for estimation of spatial genetic structure in tree populations. Heredity 95:281–289

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Yang X, Huang X et al (2017) Leaf transcriptome analysis of a subtropical evergreen broadleaf plant, wild oil-tea camellia (Camellia oleifera), revealing candidate genes for cold acclimation. BMC Genom 18:211

    Article  Google Scholar 

  • Chen T, Liu L, Zhou Y et al (2023) Characterization and comprehensive evaluation of phenotypic characters in wild Camellia oleifera germplasm for conservation and breeding. Front Plant Sci 14:1052890

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Dai X, Hou J et al (2016) DNA fingerprinting of oil camellia cultivars with SSR markers. Tree Genet Genom 12:7

    Article  Google Scholar 

  • Cui X, Li C, Qin S et al (2022a) High-throughput sequencing-based microsatellite genotyping for polyploids to resolve allele dosage uncertainty and improve analyses of genetic diversity, structure and differentiation: a case study of the hexaploid Camellia oleifera. Mol Ecol Resour 22:199–211

    Article  CAS  PubMed  Google Scholar 

  • De Kort H, Prunier JG, Ducatez S et al (2021) Life history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations. Nat Commun 12:516

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng Q, Li J, Gao C et al (2020) New perspective for evaluating the main Camellia oleifera cultivars in China. Sci Rep 10:20676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong B, Deng Z, Liu W et al (2022) Development of expressed sequence tag simple sequence repeat (EST-SSR) markers and genetic resource analysis of tea oil plants (Camellia spp.). Conserv Genet Resour 14:41–45

    Article  CAS  Google Scholar 

  • Guney M, Kafkas S, Keles H et al (2021) Genetic diversity among some Walnut (Juglans regia L.) genotypes by SSR Markers. Sustainability 13:6830

    Article  CAS  Google Scholar 

  • He Z, Liu C, Wang X et al (2020) Assessment of genetic diversity in Camellia oleifera Abel. accessions using morphological traits and simple sequence repeat (SSR) markers. Breed Sci 70:586–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Healey A, Furtado A, Cooper T, Henry RJ (2014) Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods 10:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang B, Wang Z, Huang J et al (2022) Population genetic structure analysis reveals significant genetic differentiation of the endemic species Camellia chekiangoleosa Hu. with a Narrow Geographic Range. Forests 13:234

    Article  Google Scholar 

  • Huang X (2016) Genetic structure ofhexaploid wild Camellia oleifera in mountJinggang and Lu based on microsatellite markers. Nanchang University, Master

    Google Scholar 

  • Jia B, Lin Q, Zhang L et al (2014) Development of 15 genic-ssr markers in oil-tea tree (Camellia oleifera) based on transcriptome sequencing. Genetika 46:789–797

    Article  Google Scholar 

  • Karagöz H, Hosseinpour A, Karagöz FP et al (2022) Dissection of genetic diversity and population structure in oregano (Origanum acutidens L.) genotypes based on agro-morphological properties and start codon targeted (SCoT) markers. Biologia 77:1231–1247

    Article  Google Scholar 

  • Li H, Ding H, Chen Y et al (2017) ldentification of 12 superior cultivars of camellia oleifera by using simple sequence repeat feature lndexes. J Chin Cereals Oils 32:171–178

    Google Scholar 

  • Lin P, Wang K, Wang Y et al (2022) The genome of oil-Camellia and population genomics analysis provide insights into seed oil domestication. Genome Biol 23:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meirmans PG, Liu S (2018) Analysis of molecular variance (AMOVA) for Autopolyploids. Front Ecol Evol 6:66

    Article  Google Scholar 

  • Minh Nguyen D, Lan Phan Nguyen H, Minh Nguyen T (2022) Genetic structure of the endemic Dipterocarpus condorensis revealed by microsatellite markers. AoB Plants 14:plac007

    Article  PubMed  PubMed Central  Google Scholar 

  • Molloy EK, Durvasula A, Sankararaman S (2021) Advancing admixture graph estimation via maximum likelihood network orientation. Bioinformatics 37:i142–i150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mousavi S, Stanzione V, Mencuccini M et al (2019) Biochemical and molecular profiling of unknown olive genotypes from central Italy: determination of major and minor components. Eur Food Res Technol 245:83–94

    Article  CAS  Google Scholar 

  • Özkan G, Haliloğlu K, Türkoğlu A et al (2022) Determining genetic diversity and population structure of common bean (Phaseolus vulgaris L.) landraces from Türkiye using SSR markers. Genes 13:1410

    Article  PubMed  PubMed Central  Google Scholar 

  • Öztürk Hİ, Dönderalp V, Bulut H, Korkut R (2022) Morphological and molecular characterization of some pumpkin (Cucurbita pepo L.) genotypes collected from Erzincan province of Turkey. Sci Rep 12:6814

    Article  PubMed  PubMed Central  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pometti CL, Bessega CF, Vilardi JC et al (2015) Genetic diversity within and among two Argentinean and one Mexican species of Acacia (Fabaceae). Bot J Linnean Soc 177:593–606

    Article  Google Scholar 

  • Qi H, Sun X, Yan W et al (2020) Genetic relationships and low diversity among the tea-oil Camellia species in Sect. Oleifera, a bulk woody oil crop in China. Front Plant Sci 13:996731

    Article  PubMed  PubMed Central  Google Scholar 

  • Stankiewicz KH, Vasquez Kuntz KL, Coral Microsatellite Group, Baums IB (2022) The impact of estimator choice: disagreement in clustering solutions across K estimators for Bayesian analysis of population genetic structure across a wide range of empirical data sets. Mol Ecoly Resour 22:1135–1148

  • Sütyemez M, Bükücü ŞB, Keleş Ö et al (2021) Phenological differences, genetic diversity, and population structure of genotypes obtained from seeds of Kaman-1 Walnut cultivar. J Food Qual 2021:1–9

    Article  Google Scholar 

  • Tarang A, Kordrostami M, Shahdi Kumleh A et al (2020) Study of genetic diversity in rice (Oryza sativa L.) cultivars of Central and Western Asia using microsatellite markers tightly linked to important quality and yield related traits. Genet Resour Crop Evol 67:1537–1550

    Article  CAS  Google Scholar 

  • Verhoeven KJF, vonHoldt BM, Sork VL (2016) Epigenetics in ecology and evolution: what we know and what we need to know. Mol Ecol 25:1631–1638

    Article  PubMed  Google Scholar 

  • Vuletin Selak G, Baruca Arbeiter A, Cuevas J et al (2021) Seed paternity analysis using SSR markers to assess successful pollen donors in mixed olive orchards. Plants 10:2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Song F, Song M et al (2022) Genetic structure and paternal admixture of the modern Chinese Zhuang population based on 37 Y-STRs and 233 Y-SNPs. Foren Sci Int: Genet 58:102681

    Article  CAS  Google Scholar 

  • Yilmaz A, Ciftci V (2021) Genetic relationships and diversity analysis in Turkish laurel (Laurus nobilis L.) germplasm using ISSR and SCoT markers. Mol Biol Rep 48:4537–4547

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Li T, Tian QQ et al (2022) Development of novel polymorphic microsatellite markers and their application for closely related Camellia (Theaceae) species. Russ J Genet 58:404–412

    Article  CAS  Google Scholar 

  • Zhang M, Yao Y, Chen S (2016) Genetic diversity analysis of tea germplasm in Qiannan prefecture by SSR markers. Acta Botan Boreali-Occiden Sin 36:1117–1124

    Google Scholar 

  • Zhang Z, Meng J, Pan D et al (2019) Mating system and progeny genetic diversity of Camellia oleifera ‘Ruan Zhi.’ J for Res 30:1805–1810

    Article  CAS  Google Scholar 

  • Zhao Y, Ruan CJ, Ding GJ, Mopper S (2017) Genetic relationships in a germplasm collection of Camellia japonica and Camellia oleifera using SSR analysis. Genet Mol Res 16. https://doi.org/10.4238/gmr16019526

    Article  Google Scholar 

  • Zhou B, Wang L, Xu X et al (2020) Analysis of genetic diversity and genetic relationship of Leibo wild tea resources. J Yunnan Agric Univ (nat Sci) 35:122–129

    Google Scholar 

  • Zhou L, Wang X, Wang L et al (2015) Genetic diversity of oil-tea camellia germplasms revealed by ISSR analysis. Int J Biomath 08:1550070

    Article  Google Scholar 

  • Zhu Y, Liang D, Song Z et al (2022) Genetic diversity analysis and core germplasm collection construction of Camellia oleifera based on fruit phenotype and SSR data. Genes 13:2351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the project of National Natural Science Foundation of China, grant number “32060362” and Supported by the Jiangxi Forestry Bureau Camellia Research Project grant number “YCYJZX [2023]121”.

Author information

Authors and Affiliations

Authors

Contributions

Methodology, D.H. and J.L.; software, S.Y.; formal analysis, L.Y. and Y.Z.; investigation, L.C.andB.C.; data curation,L.C. and Q.C.; writing—original draft preparation, L.C.; writing—review and editing, L.C.; project administration, D.H.; funding acquisition, D.H. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Dongnan Hu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any research with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dongnan Hu have contributed equally to this work.

Appendix

Appendix

DNA concentration of single plant leaves within each wild Camellia oleifera population.

Population

Serial number

DNA μg/ml

Population

Serial number

DNA μg/ml

Population

Serial number

DNA μg/ml

KB

1

116.7

WW

1

258.2

TG

1

70.4

2

119.0

2

96.9

2

63.5

3

109.3

3

54.1

3

80.7

4

117.0

4

73.5

4

99.0

5

105.5

5

126.8

5

72.7

6

149.2

6

68.0

6

70.0

7

167.4

7

80.0

7

72.4

8

58.8

8

77.6

8

116.2

9

115.2

9

55.6

9

89.3

10

61.5

10

94.2

10

66.7

11

80.4

11

245.3

11

82.9

12

37.4

12

74.0

12

83.7

13

70.5

13

97.1

13

61.8

14

90.3

14

65.6

14

67.8

15

88.9

15

200.2

15

62.7

16

82.2

16

139.2

16

79.3

17

83.5

17

95.7

17

46.6

18

66.6

18

74.1

18

42.2

19

70.5

19

132.1

19

63.7

20

57.5

20

103.6

20

72.0

21

55.6

21

96.6

21

93.2

22

75.7

22

81.6

22

47.4

23

129.2

23

86.0

23

106.6

24

105.9

24

54.8

24

54.5

25

77.6

25

87.2

25

63.2

26

84.7

26

124.9

26

51.1

27

59.2

27

74.1

27

57.7

28

55.4

28

56.6

28

57.4

29

71.5

29

43.7

29

70.4

30

95.4

30

87.1

30

67.4

31

33.2

31

96.0

31

76.7

Population

Serial number

DNA μg/ml

Population

Serial number

DNA μg/ml

Population

Serial number

DNA μg/ml

JLS

1

30.7

BLF

1

68.4

TF

1

48.0

2

34.6

2

55.4

2

57.8

3

48.2

3

72.0

3

75.1

4

30.0

4

51.4

4

97.1

5

30.9

5

130.9

5

91.3

6

101.5

6

102.9

6

39.1

7

46.9

7

81.2

7

79.8

8

57.9

8

49.3

8

94.3

9

55.2

9

51.7

9

90.5

10

53.0

10

59.8

10

48.7

11

56.7

11

57.7

11

91.8

12

72.2

12

46.5

12

75.9

13

58.8

13

21.4

13

48.9

14

79.4

14

37.8

14

49.6

15

76.8

15

46.8

15

59.0

16

76.2

16

69.2

16

54.9

17

125.4

17

82.6

17

45.0

18

75.9

18

77.5

18

61.8

19

82.5

19

65.1

19

68.7

20

64.1

20

64.2

20

54.8

21

83.7

21

42.9

21

51.1

22

108.0

22

99.5

22

65.2

23

114.5

23

90.6

23

61.8

24

83.0

24

129.1

24

66.3

25

69.8

25

77.8

25

43.1

26

46.2

26

602

26

105.4

27

99.2

27

62.3

27

106.2

28

49.6

28

75.7

28

67.4

29

92.7

29

47.2

29

79.0

30

91.0

30

56.9

30

54.5

31

70.7

31

48.2

31

79.4

Population

Serial number

DNA μg/ml

Population

Serial number

DNA μg/ml

Population

Serial number

DNA μg/ml

JL

1

45.6

LQ

1

37.7

XH

1

90.5

2

37.0

2

74.7

2

106.1

3

22.5

3

27.0

3

74.9

4

33.9

4

68.3

4

34.0

5

65.9

5

54.1

5

128.7

6

65.1

6

65.4

6

58.6

7

22.5

7

412

7

148.6

8

56.1

8

160.2

8

98.9

9

32.5

9

52.4

9

46.6

10

46.7

10

67.6

10

118.2

11

63.1

11

62.9

11

93.4

12

61.5

12

59.3

12

68.7

13

67.0

13

72.3

13

52.8

14

52.9

14

46.5

14

74.4

15

32.1

15

82.4

15

77.5

16

55.5

16

67.9

16

46.7

17

84.0

17

40.8

17

73.6

18

45.2

18

39.7

18

87.3

19

59.6

19

86.9

19

76.8

20

71.4

20

33.3

20

45.1

21

32.0

21

83.4

21

51.9

22

27.8

22

51.8

22

38.7

23

66.2

23

41.8

23

83.6

24

59.9

24

53.6

24

55.6

25

43.0

25

41.0

25

76.9

26

30.0

26

80.1

26

38.4

27

44.5

27

76.1

27

62.4

28

48.9

28

91.0

28

49.9

29

54.9

29

77.0

29

947

30

76.5

30

46.0

30

51.1

31

64.4

31

68.6

31

60.5

Population

Serial number

DNA μg/ml

Population

Serial number

DNA μg/ml

   

MP

1

47.3

LP

1

46.3

   
 

2

98.1

 

2

58.7

   
 

3

45.5

 

3

40.0

   
 

4

39.3

 

4

31.2

   
 

5

151.0

 

5

47.3

   
 

6

108.1

 

6

38.4

   
 

7

73.8

 

7

29.9

   
 

8

58.0

 

8

59.9

   
 

9

71.0

 

9

56.8

   
 

10

69.3

 

10

23.2

   
 

11

38.6

 

11

57.1

   
 

12

54.8

 

12

37.5

   
 

13

94.7

 

13

77.7

   
 

14

129.6

 

14

51.8

   
 

15

58.8

 

15

53.4

   
 

16

76.1

 

16

44.8

   
 

17

85.7

 

17

40.9

   
 

18

71.5

 

18

49.6

   
 

19

69.9

 

19

63.2

   
 

20

57.0

 

20

66.1

   
 

21

60.8

 

21

57.2

   
 

22

58.5

 

22

70.3

   
 

23

76.8

 

23

55.0

   
 

24

37.0

 

24

55.0

   
 

25

67.0

 

25

68.0

   
 

26

84.6

 

26

63.0

   
 

27

89.0

 

27

31.0

   
 

28

69.3

 

28

39.1

   
 

29

67.9

 

29

45.8

   
 

30

61.5

 

30

47.3

   
 

31

67.0

 

31

66.5

   

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, L., Cao, B., Xie, S. et al. Genetic diversity of wild Camellia oleifera in northern China revealed by simple sequence repeat markers. Genet Resour Crop Evol (2023). https://doi.org/10.1007/s10722-023-01785-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10722-023-01785-4

Keywords

Navigation