Skip to main content
Log in

Meta-analysis of qualitative and quantitative trait variation in sweet watermelon and citron watermelon genetic resources

  • Review
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Sweet watermelon (Citrullus lanatus var. lanatus (Thunb.) Matsum. & Nakai) is an economically important cucurbit species despite its relatively limited genetic variation for some desirable horticultural attributes. Conversely, citron watermelon (C. lanatus. var. citroides [L.H. Bailey] Mansf. ex Greb.) displays marked genetic variation for economic traits that can be integrated in genetic analysis and breeding of C. lanatus var. lanatus. Exploring the genetic resources of citron watermelon will aid gene discovery, mapping, introgression and genetic modification of sweet watermelon cultivars. The objective of this study was to document the qualitative and quantitative phenotypic trait variation present in sweet watermelon and citron watermelon genetic resources through a comparative meta-analysis as a guide for variety design with market-preferred attributes, genetic and genomic analysis. Data were assembled across 27 selected studies, and comparative meta-analyses were made. The metadata for qualitative traits included fruit traits namely: shape, colour, pattern of stripes and endocarp colour, and seed coat colour, all resolved significant genetic variations between the two species. Furthermore, significant (p < 0.001) variations were detected for quantitative phenotypic traits such as leaf length, days to the appearance of first male and female flowers, male and female flower count per single plant, plant height, branches per plant, fruit number per single plant, fruit dimensions (i.e., length and diameter), single fruit yield per plant, rind thickness, total soluble solutes, seed length, number of seeds per fruit and seed yield per fruit. The findings suggest that, compared with sweet watermelon, citron watermelon has a relatively early flowering ability, and possesses higher proportion of male and female flowers, a higher total number of branches, taller plants, a higher proportion of fruits per single plant, thicker fruit rind, low total soluble solutes, a high seed count and yield per single fruit. The quantitative and qualitative trait variation present in citron watermelon makes it a valuable genetic stock to transfer novel genes into sweet watermelon. Current and future watermelon genetic improvement programs should integrate fruit quality and yield promoting traits, local adaptation, postharvest and other consumer and industrially essential food and feed attributes for multiple utilities. The novel and contrasting traits can be introgressed through conventional breeding methods or genetic and genomic techniques such as genomics-assisted breeding, including genome editing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The meta-data used to assemble the study can be made available upon request from authors.

References

  • Achigan-Dako EG, Avohou ES, Linsoussi C, Ahanchede A, Vodouhe RS, Blattner FR (2015) Phenetic characterization of Citrullus spp. (Cucurbitaceae) and differentiation of egusi-type (C. mucosospermus). Genet Resour Crop Evol 62:1159–1179

    Article  Google Scholar 

  • Aguado E, García A, Iglesias-Moya J, Romero J, Wehner TC, Gómez-Guillamón ML, Picó B, Garcés-Claver A, Martínez C, Jamilena M (2020) Mapping a partial andromonoecy locus in citrullus lanatus using bsa-seq and gwas approaches. Front Plant Sci. 11. https://doi.org/10.3389/fpls.2020.01243.

  • Anees M, Gao L, Umer MJ, Yuan P, Zhu H, Lu X, He N, Gong C, Kaseb MO, Zhao S, Liu W (2021) Identification of key gene networks associated with cell wall components leading to flesh firmness in watermelon. Front Plant Sci 12:630–243. https://doi.org/10.3389/fpls.2021.630243

    Article  Google Scholar 

  • Assefa AD, Hur OS, Ro NY, Lee JE, Hwang AJ, Kim BS, Rhee JH, Yi JY, Kim JH, Lee HS, Sung JS, Kim MK, Noh JJ (2020) Fruit morphology, citrulline, and arginine levels in diverse watermelon (Citrullus lanatus) germplasm collections. Plants 9:1054. https://doi.org/10.3390/plants9091054

    Article  CAS  Google Scholar 

  • Branham SE, Wechter P, Lambel S, Massey L, Ma M, Fauve J, Farnham MW, Levi A (2018) QTL-seq and marker development for resistance to Fusarium oxysporum f. sp. niveum race 1 in cultivated watermelon. Mol Breed 38:139. https://doi.org/10.1007/s11032-018-0896-9

    Article  CAS  Google Scholar 

  • Branham SE, Levi A, Katawczik ML (2019) Wechter WP (2019) QTL mapping of resistance to bacterial fruit blotch in Citrullus amarus. Theor Appl Genet 132:1463–1471. https://doi.org/10.1007/s00122-019-03292-6

    Article  CAS  Google Scholar 

  • Branham SE, Wechter P, Ling KS, Chanda B, Massey L, Zhao G, Guner N, Bello M, Kabelka E, Fei Z, Levi A (2020) QTL mapping of resistance to Fusarium oxysporum f. sp. niveum race 2 and Papaya ringspot virus in Citrullus amarus. Theor Appl Genet 133:677–687. https://doi.org/10.1007/s00122-019-03500-3

    Article  CAS  Google Scholar 

  • Cheng Y, Luan F, Wang X, Gao P, Zhu Z, Liu S, Baloch AM, Zhang Y (2016) Construction of a genetic linkage map of watermelon (Citrullus lanatus) using CAPS and SSR markers and QTL analysis for fruit quality traits. Sci Hortic 202:25–31

    Article  CAS  Google Scholar 

  • Davis AR, Perkins-Veazie P, Collins J, Levi A (2008) LSW-177 and LSW-194: red-fleshed watermelon lines with low-total soluble solids. HortScience 43:538–539

    Article  Google Scholar 

  • Dia M, Wehner TC, Hassell R, Price DS, Boyhan GE, Olson S, King S, Davis AR, Tolla GE (2016) Genotype × environment interaction and stability analysis for watermelon fruit yield in the United States. Crop Sci 56:1645–1661. https://doi.org/10.2135/cropsci2015.10.0625

    Article  CAS  Google Scholar 

  • Dittmar PJ, Monks DW, Schultheis JR (2009) Maximum potential vegetative and floral production and fruit characteristics of watermelon pollenizers. HortScience 44:59–63

    Article  Google Scholar 

  • Dou J, Zhao S, Lu X, He N, Zhang L, Ali A, Kuang H, Liu W (2018a) Genetic mapping reveals a candidate gene (CLFS1) for fruit shape in watermelon (Citrullus lanatus L.). Theor Appl Genet 131:947–958

    Article  CAS  Google Scholar 

  • Dou J, Lu X, Ali A, Zhao S, Zhang L, He N, Liu W (2018b) Genetic mapping reveals a marker for yellow skin in watermelon (Citrullus lanatus L.). PLoS ONE 13:e0200617. https://doi.org/10.1371/journal.pone.0200617

    Article  CAS  Google Scholar 

  • Dou J, Yang H, Sun D, Yang S, Sun S, Zhao S, Lu X, Zhu H, Liu D, Ma C, Liu W, Yang L (2022) The branchless gene Clbl in watermelon encoding a TERMINAL FLOWER 1 protein regulates the number of lateral branches. Theor Appl Genet 135:65–79. https://doi.org/10.1007/s00122-021-03952-6

    Article  CAS  Google Scholar 

  • Elbekkay M, Hamza H, Neily MH, Djebali N, Ferchichi A (2021) Characterization of watermelon local cultivars from Southern Tunisia using morphological traits and molecular markers. Euphytica 217:74–89

    Article  CAS  Google Scholar 

  • FAOSTAT (2022) Available online at: http: www.fao.org/faostat/en/#data/QC. Accessed 14 March 2022

  • Gao L, Zhao S, Lu X, He N, Liu W (2018a) ‘SW’, a new watermelon cultivar with a sweet and sour flavour. HortScience 53:895–896

    Article  Google Scholar 

  • Gao L, Zhao S, Lu X, He N, Zhu H, Dou J, Liu W (2018b) Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon. PLoS ONE 13:e0190096. https://doi.org/10.1371/journal.pone.0190096

    Article  CAS  Google Scholar 

  • Gao Y, Guo Y, Su Z, Yu Y, Zhu Z, Gao P, Wang X (2020) Transcriptome analysis of genes related to fruit texture in watermelon. Sci Hortic 262:109075. https://doi.org/10.1016/j.scienta.2019.109075

    Article  CAS  Google Scholar 

  • Garantonakis N, Varikou K, Birouraki A, Edwards M, Kalliakaki V, Andrinopoulos F (2016) Comparing the pollination services of honey bees and wild bees in a watermelon field. Sci Hortic 204:138–144. https://doi.org/10.1016/j.scienta.2016.04.006

    Article  Google Scholar 

  • Gimode W, Clevenger J, McGregor C (2020) Fine-mapping of a major quantitative trait locus Qdff3-1 controlling flowering time in watermelon. Mol Breeding 40:3. https://doi.org/10.1007/s11032-019-1087-z

    Article  CAS  Google Scholar 

  • Gimode W, Bao K, Fei Z, McGregor C (2021) QTL associated with gummy stem blight resistance in watermelon. Theor Appl Genet 134:573–584. https://doi.org/10.1007/s00122-020-03715-9

    Article  CAS  Google Scholar 

  • Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z, Min J, Guo X et al (2012) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45:51–58

    Article  Google Scholar 

  • Guo S, Sun H, Zhang H, Liu J, Ren Y, Gong G, Jiao C, Zheng Y, Yang W, Fei Z, Xu Y (2015) Comparative transcriptome analysis of cultivated and wild watermelon during fruit development. PLoS ONE 10:e0130267

    Article  Google Scholar 

  • Guo S, Zhao S, Sun H, Wang X, Wu S, Lin T, Ren Y, Gao L, Deng Y et al (2019) Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nat Genet 51:1616–1623

    Article  CAS  Google Scholar 

  • Gusmini G, Wehner TC (2005) Foundations of yield improvement in watermelon. Crop Sci 45:141–146. https://doi.org/10.2135/cropsci2005.0141a

    Article  Google Scholar 

  • Guzzon F, Muller JV, do Nascimento Araujo M, Cauzzi P, Orsenigo S, Mondoni A, Abeli T (2017) Drought avoidance adaptive traits in seed germination and seedling growth of Citrullus amarus landraces. S Afr J Bot 113:382–388

  • Gong C , Zhao S, Yang D, Lu X, Anees M, He N, Zhu H, Zhao Y, Liu W (2022) Genome-wide association analysis provides molecular insights into natural variation in watermelon seed size. Hortic Res 9: uhab074. https://doi.org/10.1093/hr/uhab074

  • Hashizume T, Shimamoto I, Hirai M (2003) Construction of a linkage map and QTL analysis of horticultural traits for watermelon [Citrullus lanatus (THUNB.) MATSUM & NAKAI] using RAPD, RFLP and ISSR markers. Theor Appl Genet 106:779–785. https://doi.org/10.1007/s00122-002-1030-1

    Article  CAS  Google Scholar 

  • Huang Y, Zhao L, Kong Q, Fei C, Mengliang N, Xie J, Bie Z (2016) Comprehensive mineral nutrition analysis of watermelon grafted onto two different rootstocks. Hortic Plant J 2:105–113

    Article  Google Scholar 

  • Hwang JH, Ahn SG, Oh JY, Choi YW, Kang JS, Park YH (2011) Functional characterization of watermelon (Citrullus lanatus L.) EST–SSR by gel electrophoresis and high resolution melting analysis. Sci Hortic 130:715–724

    Article  CAS  Google Scholar 

  • Jawad UM, Gao L, Gebremeskel H, Safdar LB, Yuan P, Zhao S, Xuqiang L, Nan H, Hongju Z, Liu W (2020) Expression pattern of sugars and organic acids regulatory genes during watermelon fruit development. Sci Hortic 265:109102

    Article  Google Scholar 

  • Ji G, Zhang J, Gong G, Shi J, Zhang H, Ren Y, Guo S, Gao J, Shen H, Xu Y (2015) Inheritance of sex forms in watermelon (Citrullus lanatus). Sci Hortic 193:367–373. https://doi.org/10.1016/j.scienta.2015.07.039

    Article  Google Scholar 

  • Jiang H, Tian H, Yan C, Jia L, Wang Y, Wang M et al (2019) RNA-seq analysis of watermelon (Citrullus lanatus) to identify genes involved in fruit cracking. Sci Hortic 248:248–255

    Article  CAS  Google Scholar 

  • Jin B, Lee J, Kweon S (2019) Analysis of flesh color-related carotenoids and development of a CRTISO gene-based DNA marker for prolycopene accumulation in watermelon. Hortic Environ Biotechnol 60:399–410. https://doi.org/10.1007/s13580-019-00139-3

    Article  CAS  Google Scholar 

  • Karaca G, Yetişir H, Solmaz I, Çandir E, Kurt Ş, Sari N, Güler Z (2012) Rootstock potential of Turkish Lagenaria siceraria germplasm for watermelon: plant growth, yield and quality. Turkish J Agric for. https://doi.org/10.3906/tar-1101-1716

    Article  Google Scholar 

  • Kawasaki S, Miyake C, Kohchi T, Fujii S, Uchida M, Yokota A (2000) Responses of wild watermelon to drought stress: accumulation of drought response of wild watermelon roots an ArgE homologue and citrulline in leaves during water deficits. Plant Cell Physiol 42:864–873

    Article  Google Scholar 

  • Kim KH, Hwang JH, Han DY, Park M, Kim S et al (2015) Major quantitative trait loci and putative candidate genes for powdery mildew resistance and fruit-related traits revealed by an intraspecific genetic map for watermelon (Citrullus lanatus var lanatus). PLoS ONE 10:e0145665. https://doi.org/10.1371/journal.pone.0145665

    Article  CAS  Google Scholar 

  • Kombo MD, Sari N (2019) Rootstock effects on seed yield and quality in watermelon. Hortic Environ Biotechnol 60:303–312. https://doi.org/10.1007/s13580-019-00131-x

    Article  Google Scholar 

  • Legendre R, Kuzy J, McGregor C (2020) Markers for selection of three alleles of ClSUN25-26-27a (Cla011257) associated with fruit shape in watermelon. Mol Breeding 40:19. https://doi.org/10.1007/s11032-020-1104-2

    Article  CAS  Google Scholar 

  • Levi A, Ling K (2017) USVL-380, a zucchini yellow mosaic virus-resistant watermelon breeding line. J Am Soc Hortic Sci 52:1448–1450

    Google Scholar 

  • Levi A, Thomas CE, Wehner TC, Zhang X (2001a) Low genetic diversity indicates the need to broaden the genetic base of cultivated watermelon. HortScience 36:1096–1101

    Article  CAS  Google Scholar 

  • Levi A, Thomas CE, Zhang X, Joobeur T, Dean RA, Wehner TC (2001b) Carle BR (2001b) A genetic linkage map for watermelon based on randomly amplified polymorphic DNA markers. J Am Soc Hortic Sci 126:730–737

    Article  CAS  Google Scholar 

  • Levi A, Thomas E, Joobeur T, Zhang X, Davis A (2002) A genetic linkage map for watermelon derived from a testcross population: (Citrullus lanatus var. citroides x C. lanatus var. lanatus) x Citrullus colocynthis. Theor Appl Genet 105:555–563

    Article  CAS  Google Scholar 

  • Levi A, Thies JA, Simmons AM, Harrison H, Hassell R, Keinath A (2011) USVL-220, a novel watermelon breeding line. J Am Soc Hortic Sci 46:135–138

    CAS  Google Scholar 

  • Levi A, Thies JA, Wechter WP, Harrison HF, Simmons AM, Reddy UK, Nimmakayala P, Fei Z (2013) High frequency oligonucleotides: targeting active gene (HFO-TAG) markers revealed wide genetic diversity among Citrullus spp. accessions useful for enhancing disease or pest resistance in watermelon cultivars. Genet Resour Crop Evol 60:427–440

    Article  CAS  Google Scholar 

  • Levi A, Harris-Shultz KR, Ling K (2016) USVL-370, a zucchini yellow mosaic virus–resistant watermelon breeding line. J Amer Soc Hort Sci 51:107–109

    CAS  Google Scholar 

  • Li N, Shang J, Wang J et al (2018) Fine mapping and discovery of candidate genes for seed size in watermelon by genome survey sequencing. Sci Rep 8:17843. https://doi.org/10.1038/s41598-018-36104-w

    Article  CAS  Google Scholar 

  • Li B, Lu X, Gebremeskel H, Zhao S, He N, Yuan P, Gong C, Mohammed U, Liu W (2020) Genetic mapping and discovery of the candidate gene for black seed coat color in watermelon (Citrullus lanatus). Front Plant Sci 10:1689. https://doi.org/10.3389/fpls.2019.01689

    Article  Google Scholar 

  • Liang X, Gao M, Amanullah S, Guo Y, Liu X, Xu H, Liu J, Gao Y, Yuan C, Luan F (2022) Identification of QTLs linked with watermelon fruit and seed traits using GBS-based high-resolution genetic mapping. Sci Hortic 303:111237. https://doi.org/10.1016/j.scienta.2022.111237

    Article  CAS  Google Scholar 

  • Liu J, Guo S, He H, Zhang, H, Gong Y, Ren Y, Xu, Y (2013) Dynamic characteristics of sugar accumulation and related enzyme activities in sweet and non-sweet watermelon fruits. Acta Physiol Plant 35: 3213–3222. https://doi.org/10.1007/s11738-013-1356-0

    Article  CAS  Google Scholar 

  • Liu J, Guo S, He H, Zhang, H, Gong Y, Ren Y, Xu, Y (2013) Dynamic characteristics of sugar accumulation and related enzyme activities in sweet and non-sweet watermelon fruits. Acta Physiol Plant 35: 3213–3222. https://doi.org/10.1007/s11738-013-1356-0

    Article  CAS  Google Scholar 

  • Liao N, Hu Z, Li Y, Hao J, Chen S, Xue Q, Ma Y, Zhang K, Mahmoud A, Ali A, Malangisha GK, Lyu X, Yang J, Zhang M (2020) Ethylene-responsive factor 4 is associated with the desirable rind hardness trait conferring cracking resistance in fresh fruits of watermelon. Plant Biotechnol J 18:1066–1077. https://doi.org/10.1111/pbi.13276

    Article  CAS  Google Scholar 

  • Liu C, Zhang H, Dai Z, Liu X, Liu Y, Deng X, Xu J (2012) Volatile chemical and carotenoid profiles in watermelons [Citrullus vulgaris (Thunb.) Schrad (Cucurbitaceae)] with different flesh colors. Food Sci Biotechnol 21:531–541

    Article  CAS  Google Scholar 

  • Liu D, Sun D, Liang J, Dou J, Yang S, Zhu H, Hu J, Sun S, Yang L (2021) Characterization and bulk segregant analysis of ‘moon and star’ appearance in watermelon. Sci Hortic 285:110140. https://doi.org/10.1016/j.scienta.2021.110140

    Article  CAS  Google Scholar 

  • Liu J, Guo S, He H, Zhang, H, Gong Y, Ren Y, Xu, Y (2013) Dynamic characteristics of sugar accumulation and related enzyme activities in sweet and non-sweet watermelon fruits. Acta Physiol Plant 35: 3213–3222. https://doi.org/10.1007/s11738-013-1356-0

    Article  CAS  Google Scholar 

  • Lou L, Wehner TC (2016) Qualitative inheritance of external fruit traits in watermelon. HortScience 51:487–496

    Article  CAS  Google Scholar 

  • Maggs-Kölling GL, Christiansen JL (2003) Variability in namibian landraces of watermelon (Citrullus lanatus). Genet Resour Crop Evol 132:251–258

    Google Scholar 

  • Malambane G, Batlang U, Ramolekwa K, Tsujimoto H, Akashi K (2021) Growth chamber and field evaluation of physiological factors of two watermelon genotypes. Plant Stress 2:100017. https://doi.org/10.1016/j.stress.2021.100017

    Article  CAS  Google Scholar 

  • Mandizvo T, Odindo AO, Mashilo J, Magwaza LS (2022) Drought tolerance assessment of citron watermelon (Citrullus lanatus var. citroides (L.H. Bailey) Mansf. ex Greb.) accessions based on morphological and physiological traits. Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2022.03.037

    Article  Google Scholar 

  • Maragal S, Rao ES, Lakshmana Reddy DC (2019) Genetic analysis of fruit quality traits in prebred lines of watermelon derived from a wild accession of Citrullus amarus. Euphytica 215:199. https://doi.org/10.1007/s10681-019-2527-x

    Article  CAS  Google Scholar 

  • Maragal S, Nagesh GC, Reddy DCL, Rao ES (2022) QTL mapping identifies novel loci and putative candidate genes for rind traits in watermelon. 3 Biotech 12:46. https://doi.org/10.1007/s13205-022-03112-

  • Mashilo J, Shimelis H, Odindo AO, Amelework B (2017) Genetic diversity and differentiation in citron watermelon [Citrullus lanatus var. citroides] landraces assessed by simple sequence repeat markers. Sci Hortic 214:99–106. https://doi.org/10.1016/j.scienta.2016.11.015

    Article  CAS  Google Scholar 

  • Mashilo J, Shimelis H, Ngwepe R (2021) Genetic resources of bottle gourd (Lagenaria siceraria (Molina) Standl.] and citron watermelon (Citrullus lanatus var. citroides (L.H. Bailey) Mansf. ex Greb.): implications for genetic improvement, product development and commercialization: a review. S Am J Bot 145:28–47. https://doi.org/10.1016/j.sajb.2021.10.013

    Article  CAS  Google Scholar 

  • Mashilo J, Shimelis H, Ngwepe RM, Thungo Z (2022) Genetic analysis of fruit quality traits in sweet watermelon (Citrullus lanatus var. lanatus): a review. Front Plant Sci. https://doi.org/10.3389/fpls.2022.834696

    Article  Google Scholar 

  • McGregor CE, Waters V, Vashisth T, Abdel-Haleem H (2014) Flowering time in watermelon is associated with a major quantitative trait locus on chromosome 3. J Am Soc Hortic Sci 139:48–53

    Article  Google Scholar 

  • Manzano S, Aguado E, Martínez C, Megías Z, García A, Jamilena M (2016) The ethylene biosynthesis gene citacs4 regulates monoecy/andromonoecy in watermelon (Citrullus lanatus). PLoS ONE 11: e0154362. https://doi.org/10.1371/journal.pone.0154362

    Article  CAS  Google Scholar 

  • Meru G, McGregor C (2013) Genetic mapping of seed traits correlated with seed oil percentage in watermelon. HortScience 48:955–959

    Article  Google Scholar 

  • Mo Y, Yang R, Liu L, Gu X, Yang X, Wang Y, Zhang X, Li H (2016) Growth, photosynthesis and adaptive responses of wild and domesticated watermelon genotypes to drought stress and subsequent re-watering. Plant Growth Regul 79:229–241. https://doi.org/10.1007/s10725-015-0128-9

    Article  CAS  Google Scholar 

  • Mohamed FH, Abd El-Hamed KE, Elwan MWM, Hussien MNE (2014) Evaluation of different grafting methods and rootstocks in watermelon grown in Egypt. Sci Hortic 168:145–150

    Article  Google Scholar 

  • Mujaju C, Sehic J, Werlemark G, Garkava-Gustavsson L, Fatih M, Nybom H (2010) Genetic diversity in watermelon (Citrullus lanatus) landraces from Zimbabwe revealed by RAPD and SSR markers. Hereditas 147:142–153

    Article  CAS  Google Scholar 

  • Mujaju C, Zborowska A, Werlemark G, Garkava-Gustavssson L, Andersen SB, Nybom H (2011) Genetic diversity among and within watermelon (Citrullus lanatus) landraces in Southern Africa. J Hortic Sci Biotechnol 86:353–358

    Article  Google Scholar 

  • Nagesh GC, Thontadarya RN, Swamy KM et al (2020) Mapping quantitative trait loci for resistance to watermelon bud necrosis orthotospovirus in watermelon [Citrullus lanatus (Thunb) Matsum & Nakai]. Euphytica 216:104. https://doi.org/10.1007/s10681-020-02632-8

    Article  CAS  Google Scholar 

  • Ngwepe RM, Mashilo J, Shimelis H (2019) Progress in genetic improvement of citron watermelon (Citrullus lanatus var. citroides): a review. Genet Resour Crop Evol 66:735–758. https://doi.org/10.1007/s10722-018-0724-4

    Article  CAS  Google Scholar 

  • Ngwepe RM, Shimelis H, Mashilo J (2021) Variation in South African citron watermelon (Citrullus lanatus var. citroides [L.H. Bailey] Mansf. ex Greb.) landraces assessed through qualitative and quantitative phenotypic traits. Genet Resour Crop Evol 68:2495–2520. https://doi.org/10.1007/s10722-021-01145-0

    Article  Google Scholar 

  • Noh JJ, Hur OS, Ro NY, Lee JE, Hwang AJ, Kim BS et al (2020) Lycopene content and fruit morphology of red, pink, orange, and yellow fleshed watermelon (Citrullus lanatus) germplasm collections. Korean J Plant Resour 33:624–637

    Google Scholar 

  • Pal S, Revadi M, Thontadarya R, Reddy D, Varalakshmi B, Pandey C, Rao E (2020a) Understanding genetic diversity, population structure and development of a core collection of Indian accessions of watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai). Plant Genet Resour Charact Util 18:359–368. https://doi.org/10.1017/S1479262120000386

    Article  CAS  Google Scholar 

  • Pal S, Rao SE, Hebbar SS, Sriram S, Pitchaimuthu M, Rao VK (2020b) Assessment of fusarium wilt resistant Citrullus sp. rootstocks for yield and quality traits of grafted watermelon. Sci Hortic 272:109497

    Article  CAS  Google Scholar 

  • Paudel L, Clevenger J, McGregor C (2019) Chromosomal locations and interactions of four loci associated with seed coat color in watermelon. Front Plant Sci 10:788. https://doi.org/10.3389/fpls.2019.00788

    Article  Google Scholar 

  • Pei S, Liu Z, Wang X, Luan F, Dai Z, Yang Z, Zhang Q, Liu S (2021) Quantitative trait loci and candidate genes responsible for pale green flesh colour in watermelon (Citrullus lanatus). Plant Breed 140:349–359. https://doi.org/10.1111/pbr.12908

    Article  CAS  Google Scholar 

  • Perkins-Veazie P, Collins JK, Davis AR, Roberts W (2006) Carotenoid content of 50 watermelon cultivars. J Agric Food Chem 54:2593–2597

    Article  CAS  Google Scholar 

  • Prothro J, Sandlin K, Abdel-Haleem H, Bachlava E, White V, Knapp S, McGregor C (2012) Main and epistatic quantitative trait loci associated with seed size in watermelon. J Am Soc Hortic Sci 137:452–457

    Article  Google Scholar 

  • Ren Y, McGregor C, Zhang Y, Gong G, Zhang H, Guo S, Sun H, Cai W, Zhang J, Xu Y (2014) An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus). BMC Plant Biol 14:33

    Article  Google Scholar 

  • Ren Y, Jiao D, Gong G, Zhang H, Guo S, Zhang J, Xu Y (2015) Genetic analysis and chromosome mapping of resistance to Fusarium oxysporum f. sp. niveum (FON) race 1 and race 2 in watermelon (Citrullus lanatus L). Mol Breed 35:183

    Article  Google Scholar 

  • Ren Y, Guo S, Zhang J, He H, Sun H, Tian S, Gong G (2018) A tonoplast sugar transporter underlies a sugar accumulation QTL in watermelon. Plant Physiol 176:836–850

    Article  CAS  Google Scholar 

  • Ren R, Xu J, Zhang M, Liu G, Yao X, Zhu L, Hou Q (2020) Identification and molecular mapping of a gummy stem blight resistance gene in wild watermelon (Citrullus amarus) germplasm PI 189225. Plant Dis 104(1):16–24

    Article  CAS  Google Scholar 

  • Ren Y, Li M, Guo S, Sun H, Zhao J, Zhang J, Liu G, He H, Tian S, Yu Y, Gong G, Zhang H, Zhang X, Alseekh S, Fernie AR, Scheller HV, Xu Y (2021) Evolutionary gain of oligosaccharide hydrolysis and sugar transport enhanced carbohydrate partitioning in sweet watermelon fruits. Plant Cell 33:1554–1573. https://doi.org/10.1093/plcell/koab055

    Article  Google Scholar 

  • Rhee SJ, Han BK, Jang YJ et al (2015) Construction of a genetic linkage map using a frame set of simple sequence repeat and high-resolution melting markers for watermelon (Citrullus spp.). Hortic Environ Biotechnol 56:669–676. https://doi.org/10.1007/s13580-015-0110-5

    Article  CAS  Google Scholar 

  • Rivera-Burgos LA, Silverman E, Sari N, Wehner TC (2021a) Evaluation of resistance to gummy stem blight in a population of recombinant inbred lines of watermelon × citron. HortScience 56:380–388

    Article  Google Scholar 

  • Rivera-Burgos LA, Silverman EJ, Wehner TC (2021b) NC-GSB-524W, NC-GSB-527W, NC-GSB-528W, NC-GSB-530W, NC-GSB-531W, and NC-GSB-532W watermelon lines with gummy stem blight resistance and good fruit quality. HortScience 56:1599–1604

    Article  Google Scholar 

  • Sanda S, Yoshida K, Kuwano M, Kawamura T, Munekage YN, Akashi K, Yokota A (2011) Responses of the photosynthetic electron transport system to excess light energy caused by water deficit in wild watermelon. Physiol Plant 142:247–264

    Article  CAS  Google Scholar 

  • Sandlin K, Prothro J, Heesacker A, Khalilian N, Okashah R, Xiang W, Bachlava E, Caldwell DG, Taylor CA, Seymour DK, White V, Chan E, Tolla G, White C, Safran D, Graham E, Knapp S, Mcgregor C (2012) Comparative mapping in watermelon (Citrullus lanatus (Thunb.) Matsum. Et Nakai). Theor Appl Genet 125:1603–1618

    Article  Google Scholar 

  • Sheng Y, Luan F, Zhang F, Davis AR (2012) Genetic diversity within Chinese watermelon ecotypes compared with germplasm from other countries. J Amer Soc Hort Sci 137:144–151

    Article  Google Scholar 

  • Singh D, Singh R, Sandhu JS, Chunneja P (2017) Morphological and genetic diversity analysis of Citrullus landraces from India and their genetic inter relationship with continental watermelons. Sci Hortic 218:240–248

    Article  Google Scholar 

  • Solmaz I, Sari N (2009) Characterization of watermelon (Citrullus lanatus) accessions collected from Turkey for morphological traits. Genet Resour Crop Evol 56:173–188

    Article  Google Scholar 

  • Stone S, Boyhan G, McGregor C (2019) Inter- and intracultivar variation of heirloom and open-pollinated watermelon cultivars. HortScience 54:212–220

    Article  CAS  Google Scholar 

  • Subburaj S, Lee K, Jeon Y, Tu L, Son G, Choi S, Lim Y, McGregor C, Lee GJ (2019) Whole genome resequencing of watermelons to identify single nucleotide polymorphisms related to flesh color and lycopene content. PLoS ONE 14:e0223441. https://doi.org/10.1371/journal.pone.0223441

    Article  CAS  Google Scholar 

  • Szamosi C, Solmaz I, Sari N, Bársony C (2009) Morphological characterization of Hungarian and Turkish watermelon (Citrullus lanatus (Thunb.) Matsum. et Nakai) genetic resources. Genet Resour Crop Evol 56:1091–1105

    Article  Google Scholar 

  • Turhan A, Ozmen N, Kuscu H, Serbeci MS, Seniz V (2012) Influence of rootstocks on yield and fruit characteristics and quality of watermelon. Hortic Environ Biotechnol 53:336–341. https://doi.org/10.1007/s13580-012-0034-2

    Article  CAS  Google Scholar 

  • Wang C, Qiao A, Fang X, Sun L, Gao P, Davis AR, Liu S, Luan F (2019) Fine mapping of lycopene content and flesh color related gene and development of molecular marker–assisted selection for flesh color in watermelon (Citrullus lanatus). Front Plant Sci 10:1240. https://doi.org/10.3389/fpls.2019.01240

    Article  Google Scholar 

  • Wang D, Zhang M, Xu N, Yang S, Dou J, Liu D, Zhu L, Zhu H, Hu J, Ma C, Yang L, Sun S (2022) Fine mapping a CLGS gene controlling dark-green stripe rind in watermelon. Sci Hortic 291:110583. https://doi.org/10.1016/j.scienta.2021.110583

    Article  CAS  Google Scholar 

  • Wei C, Chen X, Wang Z, Liu Q, Li H et al (2017) Genetic mapping of the LOBED LEAF 1 (ClLL1) gene to a 127.6-kb region in watermelon (Citrullus lanatus L.). PLoS ONE 12:e0180741. https://doi.org/10.1371/journal.pone.0180741

    Article  CAS  Google Scholar 

  • Wu S, Wang X, Reddy U, Sun H, Bao K, Gao L, Mao L, Patel T, Ortiz C, Abburi VL et al (2019) Genome of ‘Charleston Gray’, the principal American watermelon cultivar, and genetic characterisation of 1,365 accessions in the U.S. national plant germplasm system watermelon collection. Plant Biotechnol J 17:2246–2258. https://doi.org/10.1111/pbi.13136

    Article  CAS  Google Scholar 

  • Yang X, Ren R, Ray R, Xu J, Li P, Zhang M, Liu G, Yao X, Kilian A (2016) Genetic diversity and population structure of core watermelon (Citrullus lanatus) genotypes using DArTseq-based SNPs. Plant Genetic Resour 14:226–233

    Article  Google Scholar 

  • Yavuz D, Seymen M, Süheri S, Yavuz N, Türkmen Ö, Kurtar ES (2020) How do rootstocks of citron watermelon (Citrullus lanatus var. citroides) affect the yield and quality of watermelon under deficit irrigation? Agric Water Manag 241:106351

    Article  Google Scholar 

  • Yoo KS, Bang H, Lee EJ, Crosby K, Patil BS (2012) Variation of carotenoid, sugar, and ascorbic acid concentrations in watermelon genotypes and genetic analysis. Hortic Environ Biotechnol 53:552–560. https://doi.org/10.1007/s13580-012-0014-6

    Article  CAS  Google Scholar 

  • Zhang H, Gong G, Guo S, Ren Y, Xu Y, Ling K (2011) Screening the usda watermelon germplasm collection for drought tolerance at the seedling stage. HortScience 46:1245–1248

    Article  CAS  Google Scholar 

  • Zhang H, Wang H, Guo S et al (2012) Identification and validation of a core set of microsatellite markers for genetic diversity analysis in watermelon, Citrullus lanatus Thunb Matsum & Nakai. Euphytica 186:329–342. https://doi.org/10.1007/s10681-011-0574-z

    Article  CAS  Google Scholar 

  • Zhang J, Guo S, Ren Y, Zhang H, Gong G, Zhou M, Wang G, Zong M, He H, Liu F, Xu Y (2017) High-level expression of a novel chromoplast phosphate transporter CLPHT4;2 is required for flesh color development in watermelon. New Phytol 213:1208–1221. https://doi.org/10.1111/nph.14257

    Article  CAS  Google Scholar 

  • Zhang ZP, Zhang YN, Sun L, Qiu G, Sun YJ, Zhu ZC et al (2018) Construction of a genetic map for, Citrullus lanatus, based on CAPS markers and mapping of three qualitative traits. Sci Hort 233:532–538

    Article  CAS  Google Scholar 

  • Zhang T, Liu J, Amanullah S, Ding Z, Cui H, Luan F, Gao P (2021) Fine Mapping of Cla015407 controlling plant height in watermelon. J Am Soc Hortic Sci 146:196–205

    Article  CAS  Google Scholar 

  • Zhou M, Guo S, Zhang J, Zhang H, Li C, Tang X, Ren Y, Gong G (2016) Comparative dynamics of ethylene production and expression of the ACS and ACO genes in normal-ripening and non-ripening watermelon fruits. Acta Physiol Plant 38:228–241

    Article  Google Scholar 

  • Zia S, Khan RK, Shabbir MA, Aadil RM (2021) An update on functional, nutraceutical and industrial applications of watermelon by-products: a comprehensive review. Trends Food Sci Technol 114:275–291. https://doi.org/10.1016/j.tifs.2021.05.039

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sincere gratitude to the Limpopo Department of Agriculture and Rural Development and the University of KwaZulu-Natal for financial contribution and support towards these study. Dr Enoch G. Achigan-Dako of the University of Abomey-Calavi, Benin is acknowledged for providing the raw data for citron and sweet watermelon which was incorporated in this study.

Funding

The study was supported by the Limpopo Department of Agriculture and Rural Development, and the University of KwaZulu-Natal through the African Centre for Crop Improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Mashilo.

Ethics declarations

Conflict of interest

There is not conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashilo, J., Shimelis, H., Maja, D. et al. Meta-analysis of qualitative and quantitative trait variation in sweet watermelon and citron watermelon genetic resources. Genet Resour Crop Evol 70, 13–35 (2023). https://doi.org/10.1007/s10722-022-01466-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-022-01466-8

Keywords

Navigation