Skip to main content
Log in

Amplified fragment length polymorphism-based genetic diversity among cultivated and weedy rye (Secale cereale L.) accessions

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Amplified fragment length polymorphism markers were evaluated to determine the genetic diversity and relationships among cultivated and weedy ryes (Secale cereale L.) using a large global set of accessions. On the basis of 395 polymorphic bands resulted from nine PstI-MseI primer combinations, cultivated rye exhibited higher average genetic diversity (Ht = 0.34) than that of the weedy rye (Ht = 0.27), however, it had lower genetic differentiation (Fst = 0.16). The average genetic diversity of cultivated rye varied from region to region ranging from 0.21 to 0.31. As expected, all cultivated accessions clustered together both in dendrogram and principal coordinate diagram indicating common breeding program selection criteria based on similar value-added agronomic characteristics. A clustering of cultivated rye accessions into groups based strictly on geographical origin was not found. The relationships among cultivated, weedy and wild ryes were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adam D, Simonsen V, Loeschcke V (1987) Allozyme variation in rye, Secale cereale L. 2. Commercial varieties. Theor Appl Genet 74:560–565

    Article  CAS  Google Scholar 

  • Antropov VI, Antropov VF (1936) Rye-Secale. In: Wolf EW (ed) Flora of cultivated plants, vol 2. State Agricultural Publishing Company, Moscow Leningrad, p 447

    Google Scholar 

  • Archak S, Gaikwad AB, Gautam D, Rao EVVB, Swamy KRM, Karihaloo JL (2003) Comparative assessment of DNA fingerprinting techniques (RAPD, ISSR and AFLP) for genetic analysis of cashew (Anacardium occidentale L.) accessions of India. Genome 46:362–369

    Article  PubMed  CAS  Google Scholar 

  • Barker JHA, Matthes M, Arnold GM, Edwards KJ, Ahman I, Larsson S, Karp A (1999) Characterization of genetic diversity in potential biomass willows (Salix spp.) by RAPD and AFLP analyses. Genome 42:173–183

    PubMed  CAS  Google Scholar 

  • Bernando R, Romero-Severson J, Ziegle J, Hauser J, Joe L, Hookstra G, Doerge RW (1996) Parental contribution and coefficient of coancestry among maize inbreds: pedigree, RFLP, and SSR data. Theor Appl Genet 100:552–556

    Google Scholar 

  • Chikmawati T, Skovmand B, Gustafson JP (2005) Phylogenetic relatioships in Secale revealed by AFLP. Genome 48:792–801

    Article  PubMed  CAS  Google Scholar 

  • Ćwiklinska A, Brola Z, Bocianowski J, Dobrzycka A (2010) The usefulness of RAPD and AFLP markers for determining genetic similarity in rye (Secale L.) species and subspecies. Acta Biologica Cracouiensia series Botanica 52(1):19–25

    Article  Google Scholar 

  • Frederiksen S, Petersen G (1997) Morphometrical analyses of Secale (Triticeae, Poaceae). Nordic J Bot 17(2):185–197

    Article  Google Scholar 

  • Gower JC (1966) Some distance properties of latent roof and vector methods used in multivariate analysis. Biometrika 53:325–338

    Google Scholar 

  • Hammer K, Skolimowska E, Knuepffer H (1987) Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Secale L. Kulturpflanze 35:135–177

    Article  Google Scholar 

  • Hartl DL, Clark DG (1997) Principles of population genetics. Sinauer Association Inc, Publishers, Massachusetts

    Google Scholar 

  • Johnson RC, Kisha TJ, Evans MA (2007) Characterizing safflower germplasm with AFLP molecular markers. Crop Sci 47:1728–1736

    Article  CAS  Google Scholar 

  • Karp A, Seberg N, Buiatti M (1996) Molecular techniques in the assessment of botanical diversity. Annals Bot (London) 78:143–149

    Article  CAS  Google Scholar 

  • Khush G (1962) Cytogenetic and evolution studies in Secale. II. Interrelationships of the wild Species. Evolution 16:484–496

    Article  Google Scholar 

  • Kobylyanskyi VD (1989) Flora of cultivated plants of USSR Vol II, Part 1. Agronomizdat, Leningrad, Russia

    Google Scholar 

  • Kranz AR (1957) Populationsgenetische Untersuchungen am iranischen Primitivroggen. Ein Beitrag zur Systematik, Evolution und Züchtung des Roggens. Z. Pflanzenzücht 38: 101–146

    Google Scholar 

  • Manly B (1994) Multivariate statistical methods, 2nd edn. Chapman and Hall, London

    Google Scholar 

  • Mc Arthur JV, Kovacic DA, Smith MH (1988) Genetic diversity in natural populations of a soil bacterium across a landscape gradient. Proc Natl Acad Sci USA 85:9621–9624

    Article  CAS  Google Scholar 

  • Mirdita V, Dhillon BS, Geiger HH, Miedaner T (2008) Genetic variation for resistance to ergot (Claviceps purpurea [Fr.] Tul.) among full-sib families of winter rye (Secale cereale L.). Theor Appl Genet 118:85–90

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–293

    Article  Google Scholar 

  • Persson K, von Bothmer R (2000) Assessing the allozyme variation in cultivars and Swedish landraces of rye (Secale cereale L.). Hereditas 132:7–17

    Article  PubMed  CAS  Google Scholar 

  • Persson K, von Bothmer R, Gullord M, Gunnarsson E (2006) Phenotypic variation and relationships in landraces and improved varieties of rye (Secale cereale L.) from Northern Europe. Genet Resour Crop Evol 53(4):857–866

    Article  Google Scholar 

  • Rohlf FJ (2000) NTSYSpc. Numerical taxonomy and multivariate analysis system, version 2.1. Applied Biostatistic, New York, USA

  • Saghai-Maroof MA, Biyashev RM, Yang GP, Zhang Q, Allard W (1994) Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA 91:5466–5470

    Article  PubMed  CAS  Google Scholar 

  • Shang H-Y, Wei Y-M, Wang X-R, Zheng Y-L (2006) Genetic diversity and phylogenetic relationships in the rye genus Secale L. (rye) based on Secale cereale microsatellite markers. Genet Mol Biol 29(4):685–691

    Article  CAS  Google Scholar 

  • Stutz HC (1972) On the origin of cultivated rye. Am J Bot 59(1):59–70

    Article  Google Scholar 

  • Tosto DS, Hopp HE (2000) Suitability of AFLP markers for study of genomic relationships within the Oxalis tuberosa alliance. Plant Syst Evol 223:201–209

    Article  CAS  Google Scholar 

  • Turpeinen T, Vanhala T, Nevo E, Nissila E (2003) AFLP genetic polymorphism in wild barley (Hordeum spontaneum) populations in Israel. Theor Appl Genet 106:1333–1339

    PubMed  CAS  Google Scholar 

  • Vavilov NI (1926) Studies on the origin of cultivated plants. Bull Appl Bot 16(2):1–248

    Google Scholar 

  • Vos P, Hogers R, Blecker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank several individuals for their generous shared materials: to Dr.Bockelman from Germplasm Resources Information Network (GRIN) of the United States Department of Agriculture, to Dr. M. Niedzielski and Dr. W. Podyma from Plant Breeding and Acclimatization Institute (IHAR), Poland, for providing seed materials, and to International Maize and Wheat Center (CIMMYT), Mexico for providing us DNA materials. We are grateful to Kathleen Ross for her continuous technical help and advice during preparing materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Chikmawati.

Additional information

We deeply regret the death of Dr. B. Skovmand during the development of this manuscript. We would like to dedicate this manuscript in his memory.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10722_2012_9796_MOESM1_ESM.jpg

Phylogenetic tree of 114 cultivated, 9 weedy and 2 wild rye accessions using the the neighbor-joining method, 1-114= cultivated, we1-we9=weedy, and wi1-wi2 = wild rye (JPEG 184 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chikmawati, T., Miftahudin, M., Skovmand, B. et al. Amplified fragment length polymorphism-based genetic diversity among cultivated and weedy rye (Secale cereale L.) accessions. Genet Resour Crop Evol 59, 1743–1752 (2012). https://doi.org/10.1007/s10722-012-9796-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-012-9796-8

Keywords

Navigation