Skip to main content

Advertisement

Log in

Biodiversity of Secale strictum in Iran measured using microsatellites

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The mountain rye Secale strictum is native to the Middle East and is the progenitor of the cultivated rye. Regarding lack of information about the genetic diversity of this species in Iran, this study was aimed to evaluate its genetic variation and to examine the patterns of diversity related to the varieties and geography. Fifteen wheat and rye derived microsatellite markers were used to achieve this aim. High levels of diversity, with an average number of 6.1 alleles per locus (ranging up to 11) and high level polymorphism with polymorphism rate averaging 0.624 (between populations) and 0.357 (within populations) were observed among 125 individuals from 19 populations collected from various regions of Iran. The Northwestern populations showed the highest and the Northern populations showed the lowest polymorphism and diversity. One population of the Northwest of the country was notably closer in its allele range to the S. cereale accessions used as outgroup. No taxon or geographic specific marker was detected, suggesting high gene flow between the populations, however some groupings which can be related to the geographic regions and varieties, were evident. The analysis of molecular variance attributed same portions of genetic diversity to the within and between populations with no significant variation among different geographic regions. The results of this study indicated that the Iranian genepool of Secale strictum is valuable to search for new useful alleles for crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ahmad M (2002) Assessment of genomic diversity among wheat genotypes as determined by simple sequence repeats. Genome 45:646–651

    Article  PubMed  CAS  Google Scholar 

  • Akhavan A, Saeidi H, Rahiminejad MR (2010) Genetic diversity of Secale cereale L. in Iran as measured using microsatellites. Genet Resour Crop Evol. doi: 10.1007/s10722-009-9480-9

  • Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 198:80–83

    Article  Google Scholar 

  • Chikmawati T, Skovmand B, Gustafson JP (2005) Phylogenetic relationships among Secale species revealed by amplified fragment length polymorphisms. Genome 48:792–801

    PubMed  CAS  Google Scholar 

  • Cuadrado A, Jouve N (1995) Fluorescent in situ hybridization and C-banding analyses of highly repetitive DNA sequences in the heterochromatin of rye (Secale montanum Guss.) and wheat incorporating S. montanum chromosome segments. Genome 38(4):795–802

    Article  PubMed  CAS  Google Scholar 

  • De Bustos A, Jouve N (2002) Phylogenetic relationships of the genus Secale based on the characterization of rDNA ITS sequences. Plant Syst Evol 235:147–154

    Article  Google Scholar 

  • Del Pozo JC, Figueiras AM, Benito C, De La Pena A (1995) PCR derived molecular markers and phylogenetic relationships in the Secale genus. Biologia Plant 37:481–489

    Article  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    PubMed  CAS  Google Scholar 

  • Fahima T, Röder MS, Grama A, Nevo E (1998) Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistance to yellow rust. Theor Appl Genet 96:187–195

    Article  CAS  Google Scholar 

  • Frederiksen S, Petersen G (1998) A taxonomic revision of Secale. Nord J Bot 18:399–420

    Article  Google Scholar 

  • Gawel NJ, Jarret RL (1991) A modified CTAB extraction procedure for Musa and Ipomoea. Plant Mol Biol Rep 9(3):262–266

    Article  CAS  Google Scholar 

  • Hammer K, Skolimowska E, Knüpffer H (1987) Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Secale L. Kulturpflanze 35:135–177

    Article  Google Scholar 

  • Katsumasa N, Shoji O, Sadao S (1990) B chromosomes of Secale cereale L. and S. montanum Guss. from Turkey. Japan J Breed 40:147–152

    Google Scholar 

  • Lio ZW, Biyashev RM, Saghai-Maroof MA (1996) Development of simple sequence repeat DNA markers and their integration into a barely linkage map. Theor Appl Genet 93:869–876

    Article  Google Scholar 

  • Liu K, Muse SV (2005) Integrated analysis environment for genetic marker data. Bioinformatics 21(9):2128–2129

    Article  PubMed  CAS  Google Scholar 

  • Murai K, Naiyu X, Tsunewaki K (1989) Studies on the origin of crop species by restriction endonuclease analysis of organellar DNA. III. Chloroplast DNA variation and interspecific relationships in the genus Secale. Japan J Genet 64:36–47

    Article  Google Scholar 

  • Nei M, Takezaki N (1983) Estimation of genetic distances and phylogenetic trees from DNA analysis. In: Proceedings of the 5th World Congress on Genetics applied livestock production 21:405–412. Cited and implemented in PowerMarker version 3.0

  • Pestsova E, Korzun V, Goncharov NP, Hammer K, Ganal MW, Röder MS (2000) Microsatellite analysis of Aegilops tauschii germplasm. Theor Appl Genet 101:100–106

    Article  CAS  Google Scholar 

  • Petersen G (1991) Intergeneric hybridization between Hordeum and Secale (Poaceae). I. Crosses and development of hybrids. Nord J Bot 11:253–270

    Article  Google Scholar 

  • Petersen G (1992) Meiosis of intergeneric hybrids between polyploid species of Hordeum and Secale. Hereditas 116:101–105

    Google Scholar 

  • Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    Article  CAS  Google Scholar 

  • Polanco C, Gonzalez C, Vences FJ, Perez de la Vega M (1994) Non-random mating in a Secale cereale L. (rye) population. Heredity 72:549–556

    Article  Google Scholar 

  • Rahiminejad MR, Sahebi J, Naser-Nakhaei F (2005) A morphological survey and a taxonomic revision of the genus Secale L. (Triticeae, Poaceae) in Iran. Iran Journ Bot 11(1):1–14

    Google Scholar 

  • Reddy P, Appel R, Baum BR (1990) Ribosomal DNA spacer length variation in Secale ssp. (Poaceae). Plant Syst Evol 171:205–220

    Article  CAS  Google Scholar 

  • Riley R (1955) The cytogenetics of the differences between some Secale species. J Agric Sci 46:377–383

    Article  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy PH, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Roshevitz RI (1947) Monography of the genus Secale L. Acta Inst Botanici Acad Scientiarum URSS 1(6):105–163

    Google Scholar 

  • Saal B, Wricke G (1999) Development of simple sequence repeat markers in rye (Secale cereale L.). Genome 42:964–972

    Article  PubMed  CAS  Google Scholar 

  • Saeidi H, Rahiminejad MR, Vallian S, Heslop-Harrison JS (2006) Biodiversity of diploid D-genome Aegilops tauschii Coss. in Iran measured using microsatellites. Genet Resour Crop Evol 53:1477–1484

    Article  Google Scholar 

  • Shang H, Wei Y, Wang X, Zheng Y (2006) Genetic diversity and phylogenetic relationships in the rye genus Secale L. (rye) based on Secale cereale microsatellite markers. Genet Mol Biol 29(4):685–691

    Article  CAS  Google Scholar 

  • Sheidai M, Ali-Jarrahei S (2008) Cytogenetical studies of some species of the genus Secale L. (Poaceae) in Iran. Caryologia 61(2):182–189

    Google Scholar 

  • Skuza L, Rogalska SM, Bocianowski J (2007) RFLP analysis of mitochondrial DNA in the genus Secale. Acta Biologica Cracoviensia Series Botanica 49(1):77–87

    Google Scholar 

  • Song QJ, Fickus EW, Cregan PB (2002) Characterization of trinucleotide SSR motifs in wheat. Theor Appl Genet 104:286–293

    Article  PubMed  CAS  Google Scholar 

  • Struss D, Plieske J (1998) The use of microsatellite markers for detection of genetic diversity in barley populations. Theor Appl Genet 97:308–315

    Article  CAS  Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  PubMed  CAS  Google Scholar 

  • Vaillancourt A, Nkongolo KK, Michael P, Mehes M (2008) Identification, characterization, and chromosome locations of rye and wheat specific ISSR and SCAR markers useful for breeding purposes. Euphytica 159:297–306

    Article  CAS  Google Scholar 

  • Vavilov NI (1917) On the origin of cultivated rye. Bull Appl Bot 10:561–590

    Google Scholar 

  • Vavilov NI (1992) Origin and geography of cultivated plants (English edition). Cambridge University Press, Cambridge, pp 79–93

    Google Scholar 

  • Vence FJ, Vaquero F, Perez de la Vega M (1987) Phylogenetic relationship in Secale (Poaceae): an isozymatic study. Plant Syst Evol 157:33–47

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hojjatollah Saeidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenabi, T., Saeidi, H. & Rahiminejad, M.R. Biodiversity of Secale strictum in Iran measured using microsatellites. Genet Resour Crop Evol 58, 497–505 (2011). https://doi.org/10.1007/s10722-010-9593-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-010-9593-1

Keywords

Navigation