Skip to main content
Log in

Variation in salt tolerance within a Georgian wheat germplasm collection

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Bread wheat Triticum aestivum L. possesses a genetic variation for the ability to survive and reproduce under salt stress conditions. Durum wheat (T. durum Desf.) is in general more sensitive in comparison to bread wheat, however, exceptions can be found showing the same extent of salt tolerance. Endemic wheats in general are characterised by a high adaptability to their environment. The level and variability of salt tolerance were assessed in a germplasm collection of 144 winter and spring wheat accessions from Georgia comprising Triticum aestivum L., T. durum Desf., T. dicoccon Schrank, T. polonicum L. and Georgian endemics: T. carthlicum Nevski, T. karamyschevii Nevski, T. macha Dekapr. et Menabde, T. timopheevii (Zhuk.) Zhuk. and T. zhukovskyi Menabde et Ericzjan. The accessions were tested for salt tolerance at the germination stage. Large variability in salt tolerance within the Georgian germplasm was found among the different wheat species. The endemic hexaploid winter wheat T. macha and the endemic tetraploid wheat T. timopheevii were among the most tolerant materials, thus presenting promising donors for salt tolerant traits in future breeding efforts for salinity tolerance in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahsan M, Wright D, Virk DS (1996) Genetic analysis of salt tolerance in spring wheat. Cer Res Comm 24:353–360

    Google Scholar 

  • Ayers RS, Westcott DW (1994) Water quality for agriculture. FAO irrigation and drainage papers -29

  • Börner A, Freytag U, Sperling U (2006) Analysis of wheat disease resistance data originating from screenings of Gatersleben genebank accessions during 1933 and 1992. Genet Resour Crop Evol 53:453–465. doi:10.1007/s10722-004-1158-8

    Article  Google Scholar 

  • Dekaprelevich LL (1942) The role of Georgia in wheat origin. Bull Ga Acad Sci 3:153–160

    Google Scholar 

  • Dubcovsky J, Maria GS, Epstein E, Luo MC, Dvorak J (1996) Mapping of the K+/Na+ discrimination locus in wheat. Theor Appl Genet 92:148–454. doi:10.1007/BF00223692

    Article  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319. doi:10.1093/jxb/erh003

    Article  CAS  PubMed  Google Scholar 

  • Mano Y, Nakazumi H, Takeda K (1996) Varietal variation in and effects of some major genes on salt tolerance at the germination stage in barley. Breed Sci 46:227–233

    Google Scholar 

  • Menabde VL (1948) (Wheats of Georgia) in Russian, Acad. of Sci. of Georgian SSR, Tbilisi, 350 pp

  • Menabde VL (1961) Wheats of Georgia and their part in general evolution of the genus Triticum L. Works Tbilisi Inst Bot 21:256–259

    Google Scholar 

  • Munns R, Filmer M (2007) Paving the way for salt-tolerant wheat. Farming ahead 186:50–53

    Google Scholar 

  • Munns R, James RA (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253:201–218. doi:10.1023/A:1024553303144

    Article  CAS  Google Scholar 

  • Munns R, Hare RA, James RA, Rebetzke GJ (2000) Genetic variation for improving the salt tolerance of durum wheat. Aust J Agric Res 51:69–74. doi:10.1071/AR99057

    Article  CAS  Google Scholar 

  • Nevo E (1995) Genetic resources of wild emmer, Triticum dicoccoides, for wheat improvement: news and views. Proc 8th intern wheat genet symp, Beijing, Agricultural Scientech Press, Beijing, China, pp 79–87

  • Pitman MG, Läuchli A (2002) Global impact of salinity and agricultural ecosystems. In: Läuchli A, Lüttge U (eds) Salinity: environment-plants-molecules. Kluwer Academic Publishers, Dordrecht/Boston/London, pp 1–20

    Google Scholar 

  • Prazak R (2002) Salt tolerance of Aegilops species and T. aestivum seedlings. In: Swiecicki W, Naganowska B, Wolko B (eds) Broad variation and precise characterization—limitation for the future. Proc XVI EUCARPIA Genetic resources section workshop, Poznan, Poland, pp 257–259

  • Schachtmann DP, Munns R, Whitecross MI (1991) Variation in sodium exclusion and salt tolerance in Triticum tauschii. Crop Sci 31:992–997

    Article  Google Scholar 

  • Schultze-Motel J (1989) Archäologische Kulturpflanzenreste aus der Georgischen SSR (Teil 2). Kulturpflanze 37:415–426. doi:10.1007/BF01984621

    Article  Google Scholar 

  • Shah SH, Gorham J, Forster BP, Wyn Jones RG (1987) Salt tolerance in the Triticeae: the contribution of the D genome to cation selectivity in hexaploid wheat. J Exp Bot 38:254–269. doi:10.1093/jxb/38.2.254

    Article  CAS  Google Scholar 

  • Weidner A, Börner A (2004) Salztolerante Weizen-Herkünfte aus dem Gaterslebener Genbanksortiment. Vortr Pflanzenzüchtg 63:205–209

    Google Scholar 

Download references

Acknowledgements

G. Badridze wishes to thank the German ‘Gemeinschaft zur Förderung der Kulturpflanzenforschung Gatersleben e.V.’ for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Weidner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badridze, G., Weidner, A., Asch, F. et al. Variation in salt tolerance within a Georgian wheat germplasm collection. Genet Resour Crop Evol 56, 1125–1130 (2009). https://doi.org/10.1007/s10722-009-9436-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-009-9436-0

Keywords

Navigation