Skip to main content
Log in

Recognition factors of Dolichos biflorus agglutinin (DBA) and their accommodation sites

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

A Correction to this article was published on 31 July 2023

This article has been updated

Abstract

Dolichos biflorus agglutinin (DBA) is one of the well known plant lectins that are widely used in clinical serology to differentiate human blood group A1 and A2 erythrocytes and also applied to glycobiology. However, the knowledge of recognition factors of polyvalent (super) glycotopes in glycans and the roles of functional group and epimer in monosaccharide (sub-monosaccharide recognition factor) have not been well established. The size and shape of the recognition (combining) site of DBA has not been clearly defined. In this study, many important recognition factors of DBA-glycan binding were characterized by our established enzyme-linked lectinosorbent (ELLSA) and inhibition assays. The results of these assays showed that the intensity profile of the recognition factors for the major combining site of DBA was expressed by Mass relative potency (Mass R.P.) and shown by decreasing order of high density of polyvalent GalNAcα1 → (super glycotopes, 3.7 × 103) >> the corresponding β anomers >> monomeric GalNAcα1 → related glycotopes (GalNAc as 1.0) >> their GalNAc β-anomers >> Gal (absence of NHCH3CO at carbon-2 of GalNAc) and GlcNAc (different epimer of Carbon-4 in GalNAc). From the all data available, it is proposed that the combining site of DBA should consist of a small cavity shape as major site and most complementary to monomeric GalNAcα → located at both terminal reducing end (Tn) and nonreducing end of glycan chains, and with a wide and broad area as subsite to accommodate from mono- to tetra-saccharides (GalNAcβ, Galβ1 → 3/4GlcNAc, lFucα1 → 2Galβ1 → 3/4GlcNAc, GalNAcβ1 → 3Galα1 → 4Galβ1 → 4Glc) at the nonreducing side. This study provides the most (comprehensive) recognition knowledge of DBA-glycan interactions at the factors of glycotope, super glycotope/sub-monosaccharide levels. Thus, it should expand and upgrade the conventional concept of the combining (recognition) site of DBA since 1980s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

Abbreviations

DBA:

Dolichos biflorus Agglutinin

ABA:

Agaricus bisporus Agglutinin

MBP-A:

Mannose-binding protein-A

GSI-A4 :

Bandeiraea (Griffonia) simplicifolia Lectin-I, isolectin A4

VVL-B4 :

Vicia villosa B4

HOC, cyst gps:

glycoproteins isolated from human ovarian cyst fluid

THGP:

Tamm-Horsfall glycoprotein

OSM:

Ovine submandibular gp-major

PSM:

Porcine salivary mucin

BSM:

Bovine submandibular gp

RSL:

Rat sublingual gp

Ara:

d-arabinose

lAra:

l-arabinose

Fuc:

l-fucose

dFuc:

d-fucose

Gal:

d-galactose

Glc:

d-glucose

GalNAc:

N-acetylgalactosamine

GlcNAc:

N-acetylglucosamine

NeuAc:

Sialic acid

LacNAc:

N-acetyllactosamine

A :

GalNAcα1 → 3Gal

A h :

GalNAcα1 → 3(lFucα1 → 2)Gal

B :

Galα1 → 3Gal

B h :

Galα1 → 3(lFucα1 → 2)Gal

H :

lFucα1 → 2Gal

h :

Crypto lFucα1 → 2Gal

I β :

Galβ1 → 3GlcNAcβ1 → , human blood group type I precursor sequence

II β :

Galβ1 → 4GlcNAcβ, human blood group type II precursor sequence

L :

Galβ1 → 4Glc

L β :

Galβ1 → 4Glcβ

F :

GalNAcα1 → 3GalNAc

F p :

Forssman pentasaccharide, GalNAcα1 → 3GalNAcβ1 → 3Galα1 → 4Galβ1 → 4Glc

S β :

GalNAcβ1 → 4Galβ

T :

Thomsen-Friedenreich disaccharide, Galβ1 → 3GalNAc

T α :

Galβ1 → 3GalNAcα1 → Ser/Thr

Tn :

GalNAcα1 → Ser/Thr.

Le a :

Lewis a, Galβ1 → 3[Fucα1 → 4]GlcNAc

Le b :

Lewis b, Fucα1 → 2Galβ1 → 3[Fucα1 → 4]GlcNAc

Le x :

Lewis x, Galβ1 → 4[Fucα1 → 3]GlcNAc

Le y :

Lewis y, Fucα1 → 2Galβ1 → 4[Fucα1 → 3]GlcNAc

sLea :

Sialyl Lewis a NeuAcα2 → 3Galβ1 → 3[Fucα1 → 4]GlcNAc

sLex :

Sialyl Lewis x, NeuAcα2 → 3Galβ1 → 4[Fucα1 → 3]GlcNAc

A1 and A2 :

Subtype of blood group A, in which A1 is higher density of Ah than these of A2

ELLSA:

Enzyme-linked lectinosorbent assay

mass or molar RP:

Mass or molar relative potency

TBS:

Tris-HCl buffered saline

TBS-T:

TBS with Tween 20

PBS:

Phosphate-buffered saline

MMCO:

Molecular mass cut off

References

  1. Race, R.R., Sanger, R.: Blood group polymorphism. Transfus. Immunol. 14, 1–12 (1975)

    Google Scholar 

  2. Sharon, N., Lis, H.: Lectins. 2nd Edition, Kluwer Academic Publishers, Dordrecht 14 and 305. (2003)

  3. Pramod, S.N., Thirumalai, K.P., Yeldur, V.P.: Effect of horse gram lectin (Dolichos biflorus agglutinin) on degranulation of mast cells and basophils of atopic subjects: Identification as an allergen. Int. Immunopharmacol. 6, 1714–1722 (2006)

    Article  CAS  PubMed  Google Scholar 

  4. Bianco, J., Stephenson, K., Yamada, A.T., Croy, B.A.: Time-course analyses addressing the acquisition of DBA lectin reactivity in mouse lymphoid organs and uterus during the first week of pregnancy. Placenta 29, 1009–1015 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, J.H., Yamada, A.T., Croy, B.A.: DBA-lectin reactivity defines natural killer cells that have homed to mouse deciduas. Placenta 30, 968–973 (2009)

    Article  PubMed  Google Scholar 

  6. Escada-Rebelo, S., Silva, A.F., Amaral, S., Tavares, R.S., Paiva, C., Schlatt, S., Ramalho-Santos, J., Mota, P.C.: Spermatogonial stem cell organization in felid testis as revealed by Dolichos biflorus lectin. Andrology 4(6), 1159–1168 (2016)

    Article  CAS  PubMed  Google Scholar 

  7. Kaur, G., Helmer, R.A., Smith, L.A., Martinez-Zaguilan, R., Dufour, J.M., Chilton, B.S.: Alternative splicing of helicase-like transcription factor (Hltf): Intron retention-dependent activation of immune tolerance at the feto-maternal interface. PLoS ONE 13(7), e0200211 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gaynor, L.M., Colucci, F.: Uterine natural killer cells: Functional distinctions and influence on pregnancy in humans and mice. Front. Immunol. 8, 467 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Farr, A.G., Anderson, S.K., Braddy, S.C., Mejino, J.L., Jr.: Selective binding of Dolichos biflorus agglutinin to L3T4-, Lyt-2- thymocytes. Expression of terminal alpha-linked N-acetyl-D-galactosamine residues defines a subpopulation of fetal and adult murine thymocytes. J. Immunol. 140, 1014–1021 (1988)

    Article  CAS  PubMed  Google Scholar 

  10. Chen, Z., Wang, M., Xiang, Q., Sun, Z., Zhang, R.: The lectin of Dolichos biflorus agglutinin recognises glycan epitopes on the surface of a subset of cardiac progenitor cells. Cell Biol. Int. 37(11), 1238–1245 (2013)

    CAS  PubMed  Google Scholar 

  11. Qin, L., Lei, M., Zhao, D., Wang, A., Jin, Y., Qi, X.: Goat uterine DBA+ leukocytes differentiation and cytokines expression respond differently to cloned versus fertilized embryos. PLoS ONE 10(1), e0116649 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kim, S.M., Fujihara, M., Sahare, M., Minami, N., Yamada, M., Imai, H.: Effects of extracellular matrices and lectin Dolichos biflorus agglutinin on cell adhesion and self-renewal of bovine gonocytes cultured in vitro. Reprod. Fertil. Dev. 26(2), 268–281 (2014)

    Article  CAS  PubMed  Google Scholar 

  13. Jacobs, L.R., Huber, P.W.: Regional distribution and alterations of lectin binding to colorectal mucin in mucosal biopsies from controls and subjects with inflammatory bowel diseases. J. Clin. Invest. 75, 112–118 (1985)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Muramatsu, T., Muramatsu, H., Kasai, M., Habu, S., Okumura, K.: Receptors for Dolichos biflorus agglutinin: new cell surface markers on a spontaneous leukemia. Biochem. Biophys. Res. Commun. 96, 1547–1553 (1980)

    Article  CAS  PubMed  Google Scholar 

  15. Tucker-Burden, C., Chappa, P., Krishnamoorthy, M., Gerwe, B.A., Scharer, C.D., Heimburg-Molinaro, J., Harris, W., Usta, S.N., Eilertson, C.D., Hadjipanayis, C.G., Stice, S.L., Brat, D.J., Nash, R.J.: Lectins identify glycan biomarkers on glioblastoma-derived cancer stem cells. Stem. Cells Dev. 21(13), 2374–2386 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nishijima, Y., Toyoda, M., Yamazaki-Inoue, M., Sugiyama, T., Miyazawa, M., Muramatsu, T., Nakamura, K., Narimatsu, H., Umezawa, A., Mikami, M.: Glycan profiling of endometrial cancers using lectin microarray. Genes. Cells. 17(10), 826–836 (2012)

    Article  CAS  PubMed  Google Scholar 

  17. Carter, W.G., Etzler, M.E.: Isolation, characterization, and subunit structures of multiple forms of Dolichos biflorus lectin. J. Biol. Chem. 250, 2756–2762 (1975)

    Article  CAS  PubMed  Google Scholar 

  18. Schnell, D.J., Etzler, M.E.: Primary structure of the Dolichos biflorus seed lectin. J. Biol. Chem. 262, 7220–7225 (1987)

    Article  CAS  PubMed  Google Scholar 

  19. Wu, A.M.: Polyvalency of Glycotopes and their conformational features in glycans as the most powerful recognition factors for the glycan-lectin interactions. In: Banerjee, D.K. (ed.) Glycome : the hidden code in biology, Chapter 14, pp. 287–305. Nova Science, New York (2021)

    Google Scholar 

  20. Baker, D.A., Sugii, S., Kabat, E.A., Ratcliffe, R.M., Hermentin, P., Lemieux, R.U.: Immunochemical studies on the combining sites of Forssman hapten reactive hemagglutinins from Dolichos biflorus, Helix pomatia, and Wistaria floribunda. Biochemistry 22, 2741–2750 (1983)

    Article  CAS  Google Scholar 

  21. Hammarstrom, S., Murphy, L.A., Goldstein, I.J., Etzler, M.E.: Carbohydrate binding specificity of four N-acetyl-D-galactosamine specific lectins: Helix pomatia A hemagglutinin, soybean agglutinin, lima bean lectin, and Dolichos biflorus lectin. Biochemistry 16, 2750–2755 (1977)

    Article  CAS  Google Scholar 

  22. Imberty, A., Casset, F., Gegg, C.V., Etzler, M.E., Perez, S.: Molecular modelling of the Dolichos biflorus seed lectin and its specific interactions with carbohydrates: alpha-D-N-acetylgalactosamine, Forssman disaccharide and blood group A trisaccharide. Glycoconj. J. 11, 400–413 (1994)

    Article  CAS  PubMed  Google Scholar 

  23. Hamelryck, T.W., Loris, R., Bouckaer, J., Dao-Thi, M.H., Strecker, G., Imberty, A., Fernandez, E., Wyns, L., Etzler, M.E.: Carbohydrate binding, quaternary structure and a novel hydrophobic binding site in two legume lectin oligomers from Dolichos biflorus. J. Mol. Biol. 286, 1161–1177 (1999)

    Article  CAS  PubMed  Google Scholar 

  24. Duk, M., Lisowska, E., Wu, J.H., Wu, A.M.: The biotin/avidin-mediated microtiter plate lectin assay with the use of chemically modified glycoprotein ligand. Anal. Biochem. 221, 266–272 (1994)

    Article  CAS  PubMed  Google Scholar 

  25. Wu, A.M., Wu, J.H., Herp, A., Liu, J.H.: Effect of polyvalencies of glycotopes on the binding of a lectin from the edible mushroom. Agaricus bisporus. Biochem. J. 371, 311–320 (2003)

    CAS  PubMed  Google Scholar 

  26. Piller, V., Piller, F., Cartron, J.P.: Comparison of the carbohydrate-binding specificities of seven N-acetyl-D-galactosamine-recognizing lectins. Eur. J. Biochem. 191(2), 461–466 (1990)

    Article  CAS  PubMed  Google Scholar 

  27. Wu, A.M., Wu, J.H., Watkins, W.M., Chen, C.P., Song, S.C., Chen, Y.Y.: Differential binding of human blood group Sd(a+) and Sd(a-) Tamm-Horsfall glycoproteins with Dolichos biflorus and Vicia villosa-B4 agglutinins. FEBS Lett. 429(3), 323–326 (1998)

    Article  CAS  PubMed  Google Scholar 

  28. Loris, R., Hamelryck, T., Bouckaert, J., Wyns, L.: Legume lectin structure. Biochim. Biophys. Acta. 1383(1), 9–36. Review (1998)

  29. Bouckaert, J., Hamelryck, T., Wyns, L., Loris, R.: Novel structures of plant lectins and their complexes with carbohydrates. Curr. Opin. Struct. Biol. 9(5), 572–577 (1999)

    Article  CAS  PubMed  Google Scholar 

  30. Kabat, E.A.: Antibody combining sites: how much of the antibody repertoire are we seeing? How does it influence our understanding of the structural and genetic basis of antibody complementarity? In: Wu, A.M. (ed.) The Molecular Immunology of Complex Carbohydrates. Adv. Exp. Med. Biol. 228, 1–45. Kluwer Academic Publishers, Plenum Press, New York and London (1988)

  31. Kabat, E.A.: Purification of Blood Group Substances. In: Kabat, E.A. (ed.) Blood Group Substances: Their Chemistry and Immunochemistry, Chapter 4, 135–139. Academic Press, New York (1956)

    Google Scholar 

  32. Wu, A.M.: Structural concepts of the blood group A, B, H, Lea, Leb, I and i active glycoproteins purified from human ovarian cyst fluid. In: Wu, A.M. (ed.) The Molecular Immunology of Complex Carbohydrates. Adv. Exp. Med. Biol. 228, 351–394. Kluwer Academic Publishers, Plenum Press, New York and London (1988)

  33. Wu, A.M.: Glycan structures and their recognition roles in the human blood group ABH/Ii, Lea,b,x,y and Sialyl Lea,x active cyst glycoproteins. Glycoconj. J. 36, 495–507 (2019)

    Article  CAS  PubMed  Google Scholar 

  34. Maisonrouge-McAuliffe, F., Kabat, E.A.: Immunochemical studies on blood groups. Fractionation, heterogeneity, and chemical and immunochemical properties of a blood group substance with B, I, and i activities purified from human ovarian cyst fluid. Arch. Biochem. Biophys. 175, 71–80 (1976)

    Article  CAS  PubMed  Google Scholar 

  35. Watkins, W.M.: Blood group specific substance. In: Gottschalk, A. (ed.) Glycoproteins, pp. 830–891. Elsevier, Amsterdam (1972)

    Google Scholar 

  36. Rovis, L., Anderson, B., Kabat, E.A., Gruezo, Liao, F. J.: Structures of oligosaccharides produced by base-borohydride degradation of human ovarian cyst blood group H, Leb, and Lea active glycoproteins. Biochemistry 12, 5340–5354 (1973)

  37. Allen, P.Z., Kabat, E.A.: Immunochemical studies on blood groups XXII. Immunochemical studies on the nondialyzable residue from partially hydrolyzed blood group A, B, and O(H) substances (P1 fraction). J. Immunol. 82, 340–357 (1959)

  38. Leskowitz, S., Kabat, E.A.: Immunochemical studies on blood groups XV. The effect of mild acid hydrolysis on the glucosamine and galactosamine in blood group substances. J. Am. Chem. Soc. 76, 5060–5065 (1954)

  39. Wu, A.M., Kabat, E.A., Pereira, M.E.A., Gruezo, F.G., Liao, J.: Immunochemical studies on blood groups: the internal structure and immunological properties of water-soluble human blood group A substance studied by Smith degradation, liberation, and fractionation of oligosaccharides and reaction with lectins. Arch. Biochem. Biophys. 215, 390–404 (1982)

    Article  CAS  PubMed  Google Scholar 

  40. Tettamanti, G., Pigman, W.: Purification and characterization of bovine and ovine submaxillary mucins. Arch. Biochem. Biophys. 124, 41–45 (1968)

    Article  CAS  PubMed  Google Scholar 

  41. Herp, A., Borelli, C., Wu, A.M.: Biochemistry and lectin binding properties of mammalian salivary mucous glycoproteins, In: Wu, A.M. (ed.) The Molecular Immunology of Complex Carbohydrates. Adv. Exp. Med. Biol. 228, 395–435. Kluwer Academic Publishers, Plenum Press, New York and London (1988)

  42. Wu, A.M., Csako G, Herp, A.: Structure, biosynthesis, and function of salivary mucins. Mol. Cell Biochem. 137(1), 39–55, Review (1994)

  43. Nilsson, B., Norden, N.E., Svensson, S.: Structural studies on the carbohydrate portion of fetuin. J. Biol. Chem. 254, 4545–4553 (1979)

    Article  CAS  PubMed  Google Scholar 

  44. Lindberg, A., Lönngren, J., Powell, D.A.: Structural studies and the specific type-14 pneumococcal polysaccharide. Carbohydr. Res. 58, 177–186 (1977)

    Article  CAS  PubMed  Google Scholar 

  45. Kwiatowski, B., Stirm, S.: Polysialic acid depolymerase. Methods Enzymol. 138, 786–792 (1987)

    Article  Google Scholar 

  46. Tamm, J., Horsfall, F.L.: Characterization and separation of an in-hibitor of viral hemagglutination present murine. Proc. Soc. Exp. BioL Med. 74, 108–114 (1950)

    Article  CAS  Google Scholar 

  47. Hard, K., Van Zadelhoff G., Moonen, P., Kamerling, J.P., Vliegenthart, F.G.: The Asn-linked carbohydrate chains of human Tamm-Horsfall glycoprotein of one male. Novel sulfated and novel N-acetygalactosamine-containing N-linked carbohydrate chains. Eur. J. Biochem. 209, 891–815 (1992)

  48. Wu, J.H., Watkins, W.M., Chen, C.P., Song, S.C., Wu, A.M.: Interaction of a human blood group Sd(a-) Tamm-Horsfall glycoprotein with applied lectins. FEBS Lett. 384, 231–234 (1996)

    Article  CAS  PubMed  Google Scholar 

  49. Wu, A.M., Liu, J.H.: Lectins and ELLSA as powerful tools for glycoconjugate recognition analyses. Glycoconj. J. 36(2), 175–183 (2019)

    Article  CAS  PubMed  Google Scholar 

  50. Wu, A.M.: Lectin, 2nd edition of Encyclopedia of Biophysics. Springer. New Berlin/Heidelberg, in press (2020). https://doi.org/10.1007/978-3-642-35943-9_79-1

  51. Wu, A.M.: Loci and motifs of the GalNAcα1→3/O related glycotopes in the mammalian glycoconjugates and their lectin recognition roles. Glycoconj. J. 39(1), 633–651 (2022). https://doi.org/10.1007/s10719-022-10068-6

    Article  CAS  PubMed  Google Scholar 

  52. Wu, A.M., Wu, J.H., Chen, Y.Y., Song, S.C., Kabat, E.A.: Further characterization of the combining sites of Bandeiraea (Griffonia) simplicifolia lectin-I, isolectin A(4). Glycobiology 9(11), 1161–1170 (1999)

    Article  CAS  PubMed  Google Scholar 

  53. Wu, A.M.: Polyvalency of Tn (GalNAcα1Ser/Thr) glycotope as a critical factor for Vicia villosa B4 and glycoprotein interactions. FEBS Lett. 562(1–3), 51–58 (2004)

    Article  CAS  PubMed  Google Scholar 

  54. Wu, A.M., Liu, J.H., Gong, Y.P., Li, C.C., Chang, E.T.: Multiple recognition systems adopting four different glycotopes at the same domain for the Agaricus bisporus agglutinin–glycan interactions. FEBS Lett. 584, 3561–3566 (2010)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank Drs. E. Lisowska, M. Duk, Els J.M. and Van Damme for our long term collaboration to obtain many pioneer data for this study.

This work was supported by CGU research grant, BMRP 008. The authors thank Wu’s MICCs Forever Foundation, Kwei-San, Tao-yuan, Taiwan and Ms. Ko’s help in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert M. Wu.

Ethics declarations

Competing interests

The author has no competing interests to declare that are relevant to the content of this article.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, A.M., Dudek, A. & Chen, Y.L. Recognition factors of Dolichos biflorus agglutinin (DBA) and their accommodation sites. Glycoconj J 40, 383–399 (2023). https://doi.org/10.1007/s10719-023-10118-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-023-10118-7

Keywords

Navigation