Skip to main content

Advertisement

Log in

Comparative study, homology modelling and molecular docking with cancer associated glycans of two non-fetuin-binding Tepary bean lectins

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

We present the purification and characterization of the two most abundant isoforms of lectins isolated from Tepary bean (Phaseolus acutifolius) seeds, which have been shown to differentially affect the survival of different cancer cells. They were separated by concanavalin A-affinity chromatography. After purification, to release the N-glycans, they were digested with the endoglycosidases PNGase and Glycanase A. Fractions resulted from the hydrolysis products were analyzed to determine their carbohydrate composition. Mass spectrometry data indicated that both isoforms contained high mannose glycans being mannose 6 the most abundant form. Furthermore, based on sequence Ans-X-Ser/Thr, where X is any amino acid except proline, a glycosylation site was determined on asparagine 36. When their metal requirement to preserve their biological activity was determined, the lectins showed differences. While lectin A (LA) agglutination activity was best in the presence of magnesium, lectin B (LB) was best with calcium. Additionally, only LA exhibited affinity to human type-A erythrocytes. Although both lectins showed small differences in their properties, an identical structure-model for both lectins was generated by the homology modelling process. Also, the analysis of ligand binding sites and in silico glycosylation were achieved. Molecular docking with colon adenocarcinoma associated-N-glycans revealed some highly possible interactions and, on the other hand, that N-glycan interaction zones of Tepary bean lectins is not restricted to the carbohydrate binding domain but to an extended part of their surface, which could lead new strategies to explain their biological activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pinho, S.S., Reis, C.A.: Glycosylation in cancer: Mechanisms and clinical implications. Nat. Rev. Cancer. 15, 540–555 (2015). https://doi.org/10.1038/nrc3982

    Article  CAS  PubMed  Google Scholar 

  2. An, H.J., Peavy, T.R., Hedrick, J.L., Lebrilla, C.B.: Determination of N glycosylation sites and site heterogeneity in glycoproteins. Anal. Chem. 75(20), 5628–5637 (2003). https://doi.org/10.1021/ac034414x

    Article  CAS  PubMed  Google Scholar 

  3. Goldstein, I.J., Hughes, R.C., Monsigny, M., Osawa, T. y Sharon, N.: What should be called a lectin? Nature. 285, 66 (1980). https://doi.org/10.1038/285066b0

  4. Mody, R., Joshi, S., Chaney, W.: Use of lectins as diagnostic and therapeutic tools for cancer. J. Pharmacol. Toxicol. Methods. 33, 1–10 (1995). https://doi.org/10.1016/1056-8719(94)00052-6

    Article  CAS  PubMed  Google Scholar 

  5. Ferriz-Martínez, R.A., Torres-Arteaga, I.C., Blanco-Labra, A., García-Gasca, T.: The role of plant lectins in cancer treatment. In: Mejia-Vazquez, M.C., Navarro, S. (eds.) New Approaches in the Treatment of Cancer, pp. 71–89. Nova Science Publishers Inc, New York (2010)

    Google Scholar 

  6. Gupta, G., Surolia, A., Sampathkumar, S.G.: Lectin microarrays for glycomic analysis. OMICS 14, 419–436 (2010). https://doi.org/10.1089/omi.2009.0150

    Article  CAS  PubMed  Google Scholar 

  7. Hong, C.E., Park, A.K., Lyu, S.Y.: Synergistic anticancer effects of lectin and doxorubicin in breast cancer cells. Mol. Cell. Biochem. 394, 225–235 (2014). https://doi.org/10.1007/s11010-014-2099-y

    Article  CAS  PubMed  Google Scholar 

  8. García-Gasca, T., Hernández-Rivera, E., López-Martínez, J., Casta, A.L., Yllescas-Gasca, L., Rodríguez, A.J., Blanco-Labra, A.: Effects of Tepary Bean (Phaseolus acutifolius) Protease Inhibitor and Semi pure Lectin Fractions on Cancer Cells. Nutr. Cancer. 64(8), 1269–1278 (2012). https://doi.org/10.1080/01635581.2012.722246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Ferriz-Martínez, R., García-García, K., Torres-Arteaga, I., Rodríguez-Mendez, A.J., Guerrero-Carrillo, M.J., Moreno-Celis, U., Ángeles-Zaragoza, M.V., Blanco-Labra, A., Gallegos-Corona, M.A., Robles-Álvarez, J.P., Mendiola-Olaya, E., Andrade-Montemayor, H.M., García, O.P., García-Gasca, T.: Tolerability assessment of a lectin fraction from Tepary bean seeds (Phaseolus acutifolius) orally administered to rats. Toxicol. Rep. 2, 63–69 (2015). https://doi.org/10.1016/j.toxrep.2014.10.015

    Article  CAS  PubMed  Google Scholar 

  10. Moreno-Celis, U., López-Martínez, J., Blanco-Labra, A., Cervantes-Jiménez, R., Estrada-Martínez, L.E., García-Pascalin, E., Guerrero-Carrillo, M.D.J., Rodríguez-Méndez, A.J., Mejía, C., Ferriz-Martínez, R.A., García-Gasca, T.: Phaseolus acutifolius Lectin Fractions Exhibit Apoptotic Effects on Colon Cancer: Preclinical Studies Using Dimethilhydrazine or Azoxi-Methane as Cancer Induction Agents. Molecules. 22, 1670 (2017). https://doi.org/10.3390/molecules22101670

  11. Alatorre-Cruz, J.M., Pita-López, W., López-Reyes, R.G., Ferriz-Martínez, R.A., Cervantes-Jiménez, R., Guerrero-Carrillo, M.J., Aranda-Vargas, P.J., López-Herrera, G., Rodríguez-Méndez, A.J., Zamora-Arroyo, A., Gutiérrez-Sánchez, H., Reis de Souza, T., Blanco-Labra, A., García-Gasca, T.: Effects of intragastrically-administered Tepary bean lectins on digestive and immune organs: preclinical evaluation. Toxicol. Rep. 5, 56–64 (2018). https://doi.org/10.1016/j.toxrep.2017.12.008

  12. Mirkov, T.E., Wahlstrom, J.M., Hagiwara, K., Finardi-Filho, F., Kjemtrup, S., Chrispeels, M.J.: Evolutionary relationships among proteins in the phytohemagglutinin-arcelin-alpha-amylase inhibitor family of the common bean and its relatives. Plant Mol. Biol. 26, 1103–1113 (1994). https://doi.org/10.1007/BF00040692

    Article  CAS  PubMed  Google Scholar 

  13. Torres-Arteaga, I., Castro-Guillén, J.L., Mendiola-Olaya, E., García-Gasca, T., Ángeles-Zaragoza, M.C., García-Santoyo, V., Torres-Castillo, J.A., Aguirre, C., Phinney, B., Blanco-Labra, A.: Characterization of Two Non-Fetuin-Binding Lectins from Tepary Bean (Phaseolus acutifolius) Seeds with Differential Cytotoxicity on Colon Cancer Cells. J. Glicobiol. 5, 1 (2016). https://doi.org/10.4172/2168-958X.1000117

    Article  Google Scholar 

  14. Moreno-Celis, U., López-Martínez, F.J., Cervantes-Jiménez, R., Ferríz-Martínez, R.A., Blanco-Labra, A., García-Gasca, T.: Tepary Bean (Phaseolus acutifolius) Lectins Induce Apoptosis and Cell Arrest in G0/G1 by P53(Ser46) Phosphorylation in Colon Cancer Cells. Molecules 25(5), 1021 (2020). https://doi.org/10.3390/molecules25051021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Turner, R.H., Liener, I.E.: The use of glutaraldehyde-treated erythrocytes for assaying the agglutinating activity of lectins. Anal Biochem. 68, 651–653 (1975). https://doi.org/10.1016/0003-2697(75)90663-6

    Article  CAS  PubMed  Google Scholar 

  16. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 227, 680–685 (1970). https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  17. Bradford, M.A.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976). https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  18. Wong, J.H., Wong, C.C., Ng, T.B.: Purification and characterization of a galactose-specific lectin with mitogenic activity from pinto beans. Biochem. Biophys. Acta (BBA). 1760(5), 808–813 (2006). https://doi.org/10.1016/j.bbagen.2006.02.015

    Article  CAS  PubMed  Google Scholar 

  19. Guex, N., Peitsch, M.C., Schwede, T.: Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis 30, S162–S173 (2009). https://doi.org/10.1002/elps.200900140

    Article  PubMed  Google Scholar 

  20. Bertoni, M., Kiefer, F., Biasini, M., Bordoli, L., Schwede, T.: Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci. Rep. 7, 10480 (2017). https://doi.org/10.1038/s41598-017-09654-8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Bienert, S., Waterhouse, A., de Beer, T.A.P., Tauriello, G., Studer, G., Bordoli, L., Schwede, T.: The SWISS-MODEL Repository - new features and functionality. Nucleic. Acids Res. 45, D313–D319 (2017). https://doi.org/10.1093/nar/gkw1132

    Article  CAS  PubMed  Google Scholar 

  22. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L., Lepore, R., Schwede, T.: SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46(W1), W296–W303 (2018). https://doi.org/10.1093/nar/gky427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Studer, G., Rempfer, C., Waterhouse, A.M., Gumienny, G., Haas, J., Schwede, T.: QMEANDisCo - distance constraints applied on model quality estimation. Bioinformatics 36(6), 1765–1771 (2020). https://doi.org/10.1093/bioinformatics/btz828

    Article  CAS  PubMed  Google Scholar 

  24. Martínez-Alarcón, D., Varrot, A., Fitches, E., Gatehouse, J.A., Cao, M., Pyati, P., Blanco-Labra, A., García-Gasca, T.: Recombinant Lectin from Tepary Bean (Phaseolus acutifolius) with Specific Recognition for Cancer-Associated Glycans: Production, Structural Characterization, and Target Identification. Biomolecules 10, 654 (2020). https://doi.org/10.3390/biom10040654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Yang, J., Roy, A., Zhang, Y.: Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29, 2588–2595 (2013). https://doi.org/10.1093/bioinformatics/btt447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Yang, J., Ambrish Roy, A., Zhang, Y.: BioLiP: a semi-manually curated database for biologically relevant ligand-protein interactions. Nucleic. Acids Res. 41, D1096–D1103 (2013). https://doi.org/10.1093/nar/gks966

    Article  CAS  PubMed  Google Scholar 

  27. Bohne-Lang, A., von der Lieth, C.-W.: GlyProt: in silico glycosylation of proteins. Nucleic. Acids Res. 33, W214-219 (2005). https://doi.org/10.1093/nar/gki385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Emsley, P., Brunger, A.T., Lütteke, T.: Tools to Assist Determination and Validation of Carbohydrate 3D Structure Data. Methods Mol. Biol. 1273, 229–240 (2015). https://doi.org/10.1007/978-1-4939-2343-4_17

    Article  CAS  PubMed  Google Scholar 

  29. Böhm, M., Bohne-Lang, A., Frank, M., Loss, A., Rojas-Macias, M. A., Lütteke, T.: Glycosciences.DB: an annotated data collection linking glycomics and proteomics data (2018 update). Nucleic. Acids Res. 47(D1), D1195-D1201 (2019). https://doi.org/10.1093/nar/gky994

  30. Loß, A., Bunsmann, P., Bohne, A., Loss, A., Schwarzer, E., Lang, E., von der Lieth, C.W.: SWEET-DB: an attempt to create annotated data collections for carbohydrates. Nucleic. Acids Res. 30, 405–408 (2002). https://doi.org/10.1093/nar/30.1.405

    Article  PubMed Central  PubMed  Google Scholar 

  31. Varki, A., Cummings, R.D., Aebi, M., Packer, N.H., Seeberger, P.H., Esko, J.D., Stanley, P., Hart, G., Darvill, A., Kinoshita, T., Prestegard, J.J., Schnaar, R.L., Freeze, H.H., Marth, J.D., Bertozzi, C.R., Etzler, M.E., Frank, M., Vliegenthart, J.F.G., Lütteke, T., Perez, S., Bolton, E., Rudd, P., Paulson, J., Kanehisa, M., Toukach, P., Aoki-Kinoshita, K.F., Dell, A., Narimatsu, H., York, W., Taniguchi, N., Kornfeld, S.: Symbol Nomenclature for Graphical Representations of Glycans. Glycobiology 25(12), 1323–1324 (2015). https://doi.org/10.1093/glycob/cwv091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Cheng, K., Zhou, Y., Neelamegham, S.: DrawGlycan-SNFG: a robust tool to render glycans and glycopeptides with fragmentation information. Glycobiology 27(3), 200–205 (2017). https://doi.org/10.1093/glycob/cww115

    Article  CAS  PubMed  Google Scholar 

  33. DeLano, W.L.: The PyMOL Molecular Graphics System (Version 2.3.4.) DeLano Scientific LLC. San Carlos, CA, USA (2022). https://pymol.org/2/

  34. Alocci, D., Mariethoz, J., Gastaldello, A., Gasteiger, E., Karlsson, N.G., Kolarich, D., Packer, N.H., Lisacek, F.: GlyConnect: glycoproteomics goes visual, interactive and analytical, Software tools and data resources. J. Prot. Research. 18(2), 664–677 (2019). https://doi.org/10.1021/acs.jproteome.8b00766

    Article  CAS  Google Scholar 

  35. Pérez, S., Sarkar, A., Rivet, A., Breton, C., Imberty, A.: Chapter 18. Glyco3D: A portal for structural glycosciences. In: Lütteke, T., Frank, M. (eds.). Glycoinformatics, Methods in Molecular Biology, vol. 1273. pp. 241–258. Springer Science+Business Media, New York (2015). https://doi.org/10.1007/978-1-4939-2343-4_18

  36. Kirschner, K.N., Yongye, A.B., Tschampel, S.M., Daniels, C.R., Foley, B.L., Woods, R.J.J.: GLYCAM06: A generalizable biomolecular force field. Carbohydrates. Comput. Chem. 29, 622–655 (2008). https://doi.org/10.1002/jcc.20820

    Article  CAS  Google Scholar 

  37. Venkatraman, V., Yang, Y.D., Sael, L., Kihara, D.: Protein-protein docking using region-based 3D Zernike descriptors. BMC Bioinformatics 10, 407 (2009). https://doi.org/10.1186/1471-2105-10-407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Adasme, M.F., Linnemann, K.L., Bolz, S.N., Kaiser, F., Salentin, S., Haupt, V.J., Schroeder, M.: PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 49(W1), W530–W534 (2021). https://doi.org/10.1093/nar/gkab294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Srinivasan, N., Rufino, S.D., Pepys, M.B., Wood, S., Blundell, T.L.: A superfamily of proteins with the lectin fold. Chemtracts. Biochem. Mol. Biol. 6, 149–164 (1996)

    CAS  Google Scholar 

  40. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997). https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T.L.: BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009). https://doi.org/10.1186/1471-2105-10-421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Remmert, M., Biegert, A., Hauser, A., Söding, J.: HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods. 9, 173–175 (2012). https://doi.org/10.1038/nmeth.1818

    Article  CAS  Google Scholar 

  43. Sharon, N., Lis, H.: How proteins bind carbohydrates: lessons from legume lectins. J. Agric. Food Chem. 50, 6586–6591 (2002). https://doi.org/10.1021/jf020190s

    Article  CAS  PubMed  Google Scholar 

  44. Wittmann, V., Pieters, R.J.: Bridging lectin binding sites by multivalent carbohydrates. Chem. Soc. Rev. 42, 4492 (2013). https://doi.org/10.1039/c3cs60089k

  45. Fu, L., Zhou, C., Yao, S., Yu, J.Y., Liu, B., Bao, J.K.: Plant lectins: Targeting programmed cell death pathways as antitumor agents. Int. J. Biochem. Cell Biol. 43, 1442–1449 (2011). https://doi.org/10.1016/j.biocel.2011.07.004

    Article  CAS  PubMed  Google Scholar 

  46. Bellis, S.L., Reis, C.A., Varki, A., Kannagi, R., Stanley, P.: Chapter 47 Glycosylation Changes in Cancer. In: Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Mohnen, D., Kinoshita, T., Packer, N.H., Prestegard, J.H., Schnaar, R.L., Seeberger, P.H. (eds.): Essentials of Glycobiology [Internet]. 4th edition. Cold Spring Harbor Laboratory Press, New York (2022). https://doi.org/10.1101/glycobiology.4e.47

  47. Häuselmann, I., Borsig, L.: Altered tumor-cell glycosylation promotes metastasis. Front. Oncol. 4, 28 (2014). https://doi.org/10.3389/fonc.2014.00028

    Article  PubMed Central  PubMed  Google Scholar 

  48. Noda, K., Miyoshi, E., Uozumi, N., Yanagidani, S., Ikeda, Y., Gao, C., Suzuki, K., Yoshihara, H., Yoshikawa, K., Kawano, K., Hayashi, N., Hori, M., Taniguchi, N.: Gene expression of alpha1-6 fucosyltransferase in human hepatoma tissues: A possible implication for increased fucosylation of alpha-fetoprotein. Hepatology 28, 944–952 (1998). https://doi.org/10.1002/hep.510280408

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding was provided by Consejo Nacional de Ciencia y Tecnología [project number CB-2014–01241181].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, purification, and characterization of Tepary bean lectins, data collection and analysis were performed by Iovanna Torres-Arteaga, José Luis Castro-Guillén, Elizabeth Mendiola-Olaya, Teresa García-Gasca, Cesar Aguirre-Mancilla, Alondra L. Ortega-de-Santiago, and Alejandro Blanco-Labra. Carbohydrate identification and analysis were performed by Iovanna Torres-Arteaga, Mariana Barboza, and Carlito B. Lebrilla. Homology modelling, in silico glycosylation, and docking analysis was achieved by José Luis Castro-Guillén. The first draft of the manuscript was written by Iovanna Torres-Arteaga, José Luis Castro-Guillén, Elizabeth Mendiola-Olaya, and Alejandro Blanco-Labra, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to José Luis Castro-Guillén.

Ethics declarations

Conflict interest

Authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres-Arteaga, I., Blanco-Labra, A., Mendiola-Olaya, E. et al. Comparative study, homology modelling and molecular docking with cancer associated glycans of two non-fetuin-binding Tepary bean lectins. Glycoconj J 40, 69–84 (2023). https://doi.org/10.1007/s10719-022-10091-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-022-10091-7

Keywords

Navigation