Skip to main content
Log in

Identification and characterization of sulfated glycoproteins from small cell lung carcinoma cells assisted by management of molecular charges

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Proteins carrying sulfated glycans (i.e., sulfated glycoproteins) are known to be associated with diseases, such as cancer, cystic fibrosis, and osteoarthritis. Sulfated glycoproteins, however, have not been isolated or characterized from complex biological samples due to lack of appropriate tools for their enrichment. Here, we describe a method to identify and characterize sulfated glycoproteins that are involved in chemical modifications to control the molecular charge of the peptides. In this method, acetohydrazidation of carboxyl groups was performed to accentuate the negative charge of the sulfate group, and Girard’s T modification of aspartic acid was performed to assist in protein identification by MS tagging. Using this approach, we identified and characterized the sulfated glycoproteins: Golgi membrane protein 1, insulin-like growth factor binding protein-like 1, and amyloid beta precursor-like protein 1 from H2171 cells, a small cell lung carcinoma cell line. These sulfated glycoproteins carry a complex-type N-glycan with a core fucose and 4′-O-sulfated LacdiNAc as the major glycan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Magro G., Perissinotto D., Schiappacassi M., Goletz S., Otto A., Müller E.C., Bisceglia M., Brown G., Ellis T., Grasso S., Colombatti A., Perris R.: Proteomic and postproteomic characterization of keratan sulfate-glycanated isoforms of thyroglobulin and transferrin uniquely elaborated by papillary thyroid carcinomas. Am. J. Pathol. 163, 183–196 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sangadala S., Bhat U.R., Mendicino J.: Structures of sulfated oligosaccharides in human trachea mucin glycoproteins. Mol. Cell. Biochem. 126, 37–47 (1993)

    Article  CAS  PubMed  Google Scholar 

  3. Sundblad G., Kajiji S., Quaranta V., Freeze H.H., Varki A.: Sulfated N-linked oligosaccharides in mammalian cells. III. Characterization of a pancreatic carcinoma cell surface glycoprotein with N- and O-sulfate esters on asparagine-linked glycans. J. Biol. Chem. 263, 8897–8903 (1988)

    CAS  PubMed  Google Scholar 

  4. Mawhinney T.P., Adelstein E., Morris D.A., Mawhinney A.M., Barbero G.J.: Structure determination of five sulfated oligosaccharides derived from tracheobronchial mucus glycoproteins. J. Biol. Chem. 262, 2994–3001 (1987)

    CAS  PubMed  Google Scholar 

  5. Plaas A.H., West L.A., Wong-Palms S., Nelson F.R.: Glycosaminoglycan sulfation in human osteoarthritis. Disease-related alterations at the non-reducing termini of chondroitin and dermatan sulfate. J. Biol. Chem. 273, 12642–12649 (1998)

    Article  CAS  PubMed  Google Scholar 

  6. Bayliss M.T., Osborne D., Woodhouse S., Davidson C.: Sulfation of chondroitin sulfate in human articular cartilage. The effect of age, topographical position, and zone of cartilage on tissue composition. J. Biol. Chem. 274, 15892–15900 (1999)

    Article  CAS  PubMed  Google Scholar 

  7. Tondorov P.T., Deacon M., Tisdale M.J.: Structural analysis of a tumor-produced sulfated glycoprotein capable of initiating muscle protein degradation. J. Biol. Chem. 272, 12279–12288 (1997)

    Article  Google Scholar 

  8. Yeh J.C., Hiraoka N., Petryniak B., Nakayama J., Ellies L.G., Rabuka D., Hindsgaul O., Marth J.D., Lowe J.B., Fukuda M.: Novel sulfated lymphocyte homing receptors and their control by a Core1 extension beta 1,3-N-acetylglucosaminyltransferase. Cell. 105, 957–969 (2001)

    Article  CAS  PubMed  Google Scholar 

  9. Honke K., Taniguchi N.: Sulfotransferases and sulfated oligosaccharides. Med. Res. Rev. 22, 637–654 (2002)

    Article  CAS  PubMed  Google Scholar 

  10. Delcommenne M., Kannagi R., Johnson P.: TNF-alpha increases the carbohydrate sulfation of CD44: induction of 6-sulfo N-acetyl lactosamine on N- and O-linked glycans. Glycobiology. 12, 613–622 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. Bergwerff A.A., Van Oostrum J., Kamerling J.P., Vliegenthart J.F.: The major N-linked carbohydrate chains from human urokinase. The occurrence of 4-O-sulfated, (alpha 2–6)-sialylated or (alpha 1–3)-fucosylated N-acetylgalactosamine(beta 1–4)-N-acetylglucosamine elements. Eur. J. Biochem. 228, 1009–1019 (1995)

    Article  CAS  PubMed  Google Scholar 

  12. Thingholm T.E., Jensen O.N.: Enrichment and characterization of phosphopeptides by immobilized metal affinity chromatography (IMAC) and mass spectrometry. Methods Mol. Biol. 527, 47–56 (2009)

    Article  CAS  PubMed  Google Scholar 

  13. Kaji H., Saito H., Yamauchi Y., Shinkawa T., Taoka M., Hirabayashi J., Kasai K., Takahashi N., Isobe T.: Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat. Biotechnol. 21, 667–672 (2003)

    Article  CAS  PubMed  Google Scholar 

  14. Zhang H., Li X.J., Martin D.B., Aebersold R.: Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol. 21, 660–666 (2003)

    Article  CAS  PubMed  Google Scholar 

  15. Bai X., Brown J.R., Varki A., Esko J.D.: Enhanced 3-O-sulfation of galactose in Asn-linked glycans and Maackia amurensis lectin binding in a new Chinese hamster ovary cell line. Glycobiology. 11, 621–632 (2001)

    Article  CAS  PubMed  Google Scholar 

  16. Tateno H., Ohnishi K., Yabe R., Hayatsu N., Sato T., Takeya M., Narimatsu H., Hirabayashi J.: Dual specificity of Langerin to sulfated and mannosylated glycans via a single C-type carbohydrate recognition domain. J. Biol. Chem. 285, 6390–6400 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. Evangelista R.A., Liu M.S., Chen F.T.: Characterization of 9-aminopyrene-1,4,6-trisulfonate derivatized sugars by capillary electrophoresis with laser-induced fluorescence detection. Anal. Chem. 67, 2239–2245 (1995)

    Article  CAS  Google Scholar 

  18. Kameyama A., Kaneda Y., Yamanaka H., Yoshimine H., Narimatsu H., Shinahara Y.: Detection of oligosaccharides labeled with cyanine dyes using matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 76, 4537–4542 (2004)

    Article  CAS  PubMed  Google Scholar 

  19. Keough T., Youngquist R.S., Lacey M.P.: A method for high-sensitivity peptide sequencing using postsource decay matrix-assisted laser desorption ionization mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 96, 7131–7136 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Toyoda M., Narimatsu H., Kameyama A.: Enrichment method of sulfated glycopeptides by a sulfate emerging and ion exchange chromatography. Anal. Chem. 81, 6140–6147 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. Jiang H., Desaire H., Butnev V.Y., Bousfield G.R.: Glycoprotein profiling by electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 15, 750–758 (2004)

    Article  CAS  PubMed  Google Scholar 

  22. Jiang H., Irungu J., Desaire H.: Enhanced detection of sulfated glycosylation sites in glycoproteins. J. Am. Soc. Mass Spectrom. 16, 340–348 (2005)

    Article  CAS  PubMed  Google Scholar 

  23. Irungu J., Dalpathado D.S., Go E.P., Jiang H., Ha H.V., Bousfield G.R., Desaire H.: Method for characterizing sulfated glycoproteins in a glycosylation site-specific fashion, using ion pairing and tandem mass spectrometry. Anal. Chem. 78, 1181–1190 (2006)

    Article  CAS  PubMed  Google Scholar 

  24. Jensen P.H., Kolarich D., Packer N.H.: Mucin-type O-glycosylation–putting the pieces together. FEBS J. 277, 81–94 (2010)

    Article  CAS  PubMed  Google Scholar 

  25. Zubarev R.A., Kelleher N.L., McLafferty F.W.: Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 120, 3265–3266 (1998)

    Article  CAS  Google Scholar 

  26. Syka J.E., Coon J.J., Schroeder M.J., Shabanowitz J., Hunt D.F.: Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 101, 9528–9533 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu H., Håkansson K.: Electron capture dissociation of divalent metal-adducted sulfated oligosaccharides. Int. J. Mass Spectrom. 305, 170–177 (2011)

    Article  CAS  Google Scholar 

  28. Wada Y., Tajiri M., Yoshida S.: Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal. Chem. 76, 6560–6565 (2004)

    Article  CAS  PubMed  Google Scholar 

  29. Toyoda M., Ito H., Matsuno Y.-K., Narimatsu H., Kameyama A.: Quantitative derivatization of sialic acids for the detection of sialoglycans by MALDI MS. Anal. Chem. 80, 5211–5218 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. Kaji H., Yamauchi Y., Takahashi N., Isobe T.: Mass spectrometric identification of N-linked glycopeptides using lectin-mediated affinity capture and glycosylation site-specific stable isotope tagging. Nat. Protoc. 1, 3019–3027 (2006)

    Article  CAS  PubMed  Google Scholar 

  31. Angel P.M., Lim J.M., Wells L., Bergmann C., Orlando R.: A potential pitfall in 18O-based N-linked glycosylation site mapping. Rapid Commun. Mass Spectrom. 21, 674–682 (2007)

    Article  CAS  PubMed  Google Scholar 

  32. Wheeler O.H.: (1962) The Girard reagents. Chem. Rev. 62, 205–221 (1962)

  33. Parkin D.M., Bray F., Ferlay J., Pisani P.: Global cancer statistics, 2002. CA Cancer J. Clin. 55, 74–108 (2005)

    Article  PubMed  Google Scholar 

  34. Shibayama T., Ueoka H., Nishii K., Kiura K., Tabata M., Miyatake K., Kitajima T., Harada M.: Complementary roles of pro-gastrin-releasing peptide (ProGRP) and neuron specific enolase (NSE) in diagnosis and prognosis of small-cell lung cancer (SCLC). Lung Cancer. 32, 61–69 (2001)

    Article  CAS  PubMed  Google Scholar 

  35. Xia G., Evers M.R., Kang H.G., Schachner M., Baenziger J.U.: Molecular cloning and expression of the pituitary glycoprotein hormone N-acetylgalactosamine-4-O-sulfotransferase. J. Biol. Chem. 275, 38402–38409 (2000)

    Article  CAS  PubMed  Google Scholar 

  36. Kang H.G., Evers M.R., Xia G., Baenziger J.U., Schachner M.: Molecular cloning and expression of an N-acetylgalactosamine-4-O-sulfotransferase that transfers sulfate to terminal and nonterminal β1,4-linked N-acetylgalactosamine. J. Biol. Chem. 276, 10861–10869 (2001)

    Article  CAS  PubMed  Google Scholar 

  37. Uematsu R., Furukawa J., Nakagawa H., Shinohara Y., Deguchi K., Monde K., Nishimura S.: High throughput quantitative glycomics and glycoform-focused proteomics of murine dermis and epidermis. Mol. Cell. Proteomics. 4, 1977–1989 (2005)

    Article  CAS  PubMed  Google Scholar 

  38. Vercruysse K.P., Marecak D.M., Marecek J.F., Prestwich G.D.: Synthesis and in vitro degradation of new polyvalent hydrazide cross-linked hydrogels of hyaluronic acid. Bioconjug. Chem. 8, 686–694 (1997)

    Article  CAS  PubMed  Google Scholar 

  39. Reubsaet J.L., Beijnen J.H., Bult A., van Maanen R.J., Marchal J.A., Underberg W.J.: Analytical techniques used to study the degradation of proteins and peptides: chemical instability. J. Pharm. Biomed. Anal. 17, 955–978 (1998)

    Article  CAS  PubMed  Google Scholar 

  40. Minamisawa T., Hirabayashi J.: Fragmentations of isomeric sulfated monosaccharides using electrospray ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 19, 1788–1796 (2005)

    Article  CAS  PubMed  Google Scholar 

  41. Xu C.F., Lu Y., Ma J., Mohammadi M., Neubert T.A.: Identification of phosphopeptides by MALDI Q-TOF MS in positive and negative ion modes after methyl esterification. Mol. Cell. Proteomics. 4, 809–818 (2005)

    Article  CAS  PubMed  Google Scholar 

  42. Hirao Y., Matsuzaki H., Iwaki J., Kuno A., Kaji H., Ohkura T., Togayachi A., Abe M., Nomura M., Noguchi M., Ikehara Y., Narimatsu H.: Glycoproteomics approach for identifying glycobiomarker candidate molecules for tissue type classification of non-small cell lung carcinoma. J. Proteome Res. 13, 4705–4716 (2014)

    Article  CAS  PubMed  Google Scholar 

  43. Arvidsson Y., Andersson E., Bergstrom A., Andersson M.K., Altiparmak G., Illerskog A.C., Ahlman H., Lamazhapova D., Nilsson O.: Amyloid precursor-like protein 1 is differentially upregulated in neuroendocrine tumours of the gastrointestinal tract. Endocr. Relat. Cancer. 15, 569–581 (2008)

    Article  CAS  PubMed  Google Scholar 

  44. Narimatsu H., Sawaki H., Kuno A., Kaji H., Ito H., Ikehara Y.: A strategy for discovery of cancer glyco-biomarkers in serum using newly developed technologies for glycoproteomics. FEBS J. 277, 95–105 (2010)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank S. Nakaya (Shimadzu Corporation, Kyoto, Japan) for acquiring the MALDI-MSn spectra in the negative ion mode. This work was performed as a part of the R&D Project of the Industrial Science and Technology Frontier Program supported by the New Energy and Industrial Technology Development Organization (NEDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Kameyama.

Electronic supplementary material

ESM 1

(PDF 577 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toyoda, M., Kaji, H., Sawaki, H. et al. Identification and characterization of sulfated glycoproteins from small cell lung carcinoma cells assisted by management of molecular charges. Glycoconj J 33, 917–926 (2016). https://doi.org/10.1007/s10719-016-9700-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9700-4

Keywords

Navigation