Skip to main content

Advertisement

Log in

Site specific N-glycan profiling of NeuAc(α2-6)-Gal/GalNAc-binding bark Sambucus nigra agglutinin using LC–MSn revealed differential glycosylation

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The bark of Sambucus nigra contains a complex mixture of glycoproteins that are characterized as chimeric lectins known as type II ribosome inactivating proteins and holo lectins. These type II ribosome inactivating proteins possess RNA N-glycosidase activity in subunit A and lectin activity associated with subunit B exhibiting distinct sugar specificities to NeuAc(α2-6)-Gal/GalNAc and Gal/GalNAc. In the present study we have determined the N-glycosylation pattern of type II ribosome inactivating protein specific to NeuAc(α2-6)-Gal/GalNAc (Sambucus nigra agglutinin I) by subjecting it to digestion with multiple proteases. The resulting mixture of peptides and N-glycopeptides were analyzed on liquid chromatography coupled to electro spray ionization-iontrap mass spectrometry in MSn mode. MS2 of precursor ions was carried out using CID which provided information on glycan sequence. In subsequent MS3 of Y1/Y ions (peptide + HexNAc)+n of corresponding N-glycopeptides, resulted in the fragmentation of peptide backbone confirming the site of attachment. We observed microheterogeneity in each glycan occupied site with subunit A possessing four N-glycans out of six sites with complex and paucimannose types while subunit B comprises occupancy of two sites with a paucimannose and a high mannose type. The differential N-glycosylation of subunits in SNA is discussed in the context of other type II RIPs glycans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABC:

ammonium bicarbonate

ACN:

acetonitrile

CID:

collision induced dissociation

ESI:

electrospray ionization

ETD:

electron transfer dissociation

IAA:

iodoacetamide

LC:

liquid chromatography

RIPs:

ribosome inactivating proteins

SNA:

Sambucus nigra agglutinin

References

  1. Hartley M.R., Lord J.M.: Cytotoxic ribosome-inactivating lectins from plants. Biochim. Biophys. Acta. 1701, 1–14 (2004)

    Article  CAS  PubMed  Google Scholar 

  2. Van Damme E.J., Peumans W.J., Barre A., Rougé P.: Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit. Rev. Plant Sci. 17, 575–692 (1998)

    Article  Google Scholar 

  3. Barbieri L., Battelli M.G., Stirpe F.: Ribosome inactivating proteins from plants. Biochim. Biophys. Acta. 1154, 237–282 (1993)

    Article  CAS  PubMed  Google Scholar 

  4. Shang C., Chen Q., Dell A., Haslam S.M., De Vos W.H., Van Damme E.J.: The cytotoxicity of elderberry ribosome-inactivating proteins is not solely determined by their protein translation inhibition activity. PLoS One. 10, e0132389 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Girbés, T., Citores, L., Iglesias, R., Ferreras, J.M., Muñoz, R., Rojo, M.A., Arias, F.J., García, J.R., Méndez, E., Calonge, M.: Ebulin 1, a nontoxic novel type 2 ribosome-inactivating protein from Sambucus ebulus L. leaves. J. Biol. Chem. 268, 18195–18199 (1993)

  6. Broekaert, W.F., Nsimba-Lubaki, M., Peeters, B., Peumans, W.J.: A lectin from elder (Sambucus nigra L.) bark. Biochem. J. 221,163–169 (1984)

  7. Shibuya, N., Goldstein, I.J., Broekaert, W.F., Nsimba-Lubaki, M., Peeters, B., Peumans, W.J.: The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac (alpha 2–6) Gal/GalNAc sequence. J Biol Chem. 262, 1596–1601 (1987)

  8. Van Damme E.J., Barre A., Rougé P., Van Leuven F., Peumans W.J.: The NeuAc (alpha-2,6)-gal/GalNAc-binding lectin from elderberry (Sambucus nigra) bark, a type-2 ribosome-inactivating protein with an unusual specificity and structure. Eur. J. Biochem. 235, 128–137 (1996)

    Article  PubMed  Google Scholar 

  9. Van Damme E.J.M., Hao Q., Chen Y., Barre A., Vandenbussche F., Desmyter S., Rougé P., Peumans W.J.: Ribosome-inactivating proteins: a family of plant proteins that do more than inactivate ribosomes. Crit. Rev. Plant Sci. 20, 395–465 (2001)

    Article  Google Scholar 

  10. Varki A., Cummings R.D., Esko J.D., Freeze H.H., Stanley P., Bertozzi C.R., Hart G.W., Etzler M.E.: Essentials of Glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, New York (2009)

    Google Scholar 

  11. Van Damme E.J., Roy S., Barre A., Citores L., Mostafapous K., Rougé P., Van Leuven F., Girbés T., Goldstein I.J., Peumans W.J.: Elderberry (Sambucus nigra) bark contains two structurally different Neu5Ac (alpha2,6) gal/GalNAc-binding type 2 ribosome-inactivating proteins. Eur. J. Biochem. 245, 648–655 (1997)

    Article  PubMed  Google Scholar 

  12. Van Damme E.J., Barre A., Rougé P., Van Leuven F., Peumans W.J.: Characterization and molecular cloning of Sambucus nigra agglutinin V (nigrin b), a GalNAc-specific type-2 ribosome-inactivating protein from the bark of elderberry (Sambucus nigra). Eur. J. Biochem. 237, 505–513 (1996)

    Article  PubMed  Google Scholar 

  13. Van Damme E.J., Barre A., Rougé P., Van Leuven F., Peumans W.J.: Isolation and molecular cloning of a novel type 2 ribosome-inactivating protein with an inactive B chain from elderberry (Sambucus nigra) bark. J. Biol. Chem. 272, 8353–8360 (1997)

    Article  PubMed  Google Scholar 

  14. Kaku, H., Peumans, W.J., Goldstein, I.J.: Isolation and characterization of a second lectin (SNA-II) present in elderberry (Sambucus nigra L.) bark. Arch. Biochem. Biophys. 277, 255–262 (1990)

  15. Peumans W.J., Roy S., Barre A., Rouge P., van Leuven F., van Damme E.J.: Elderberry (Sambucus nigra) contains truncated Neu5Ac (alpha-2,6) gal/GalNAc-binding type 2 ribosome-inactivating proteins. FEBS Lett. 425, 35–39 (1998)

    Article  CAS  PubMed  Google Scholar 

  16. Lerouge P., Cabanes-Macheteau M., Rayon C., Fischette-Lainé A.C., Gomord V., Faye L.: N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol. Biol. 38, 31–48 (1998)

    Article  CAS  PubMed  Google Scholar 

  17. Rayon C., Lerouge P., Faye L.: The protein N-glycosylation in plants. J. Exp. Bot. 49, 1463–1472 (1998)

    Article  CAS  Google Scholar 

  18. Kimura Y., Hase S., Kobayashi Y., Kyogoku Y., Ikenaka T., Funatsu G.: Structures of sugar chains of ricin D. J. Biochem. 103, 944–949 (1988)

    CAS  PubMed  Google Scholar 

  19. Wacker, R., Stoeva, S., Betzel, C., Voelter, W.: Complete structure determination of N-acetyl-D-galactosamine-binding mistletoe lectin-3 from Viscum album L.album. J. Pept. Sci. 11, 289–302 (2005)

  20. Sharma A., Pohlentz G., Bobbili K.B., Jeyaprakash A.A., Chandran T., Mormann M., Swamy M.J., Vijayan M.: The sequence and structure of snake gourd (Trichosanthes anguina) seed lectin, a three-chain nontoxic homologue of type II RIPs. Acta Crystallogr. D Biol. Crystallogr. 69, 1493–1503 (2013)

    Article  CAS  PubMed  Google Scholar 

  21. Zhu Z., Desaire H.: Carbohydrates on proteins: site-specific glycosylation analysis by mass spectrometry. Annu. Rev. Anal. Chem. 8, 463–483 (2015)

    Article  CAS  Google Scholar 

  22. Wuhrer M.: Glycomics using mass spectrometry. Glycoconj. J. 30, 11–22 (2013)

    Article  CAS  PubMed  Google Scholar 

  23. Wuhrer M., Deelder A.M., Hokke C.H.: Protein glycosylation analysis by liquid chromatography-mass spectrometry. J. Chromatogr. B. 825, 124–133 (2005)

    Article  CAS  Google Scholar 

  24. Zauner G., Deelder A.M., Wuhrer M.: Recent advances in hydrophilic interaction liquid chromatography (HILIC) for structural glycomics. Electrophoresis. 32, 3456–3466 (2011)

    Article  CAS  PubMed  Google Scholar 

  25. Stavenhagen K., Plomp R., Wuhrer M.: Site-specific protein N- and O-glycosylation analysis by a C18-porous graphitized carbon-liquid chromatography-electrospray ionization mass spectrometry approach using pronase treated glycopeptides. Anal. Chem. 87, 11691–11699 (2015)

    Article  CAS  PubMed  Google Scholar 

  26. Alley Jr. W.R., Mechref Y., Novotny M.V.: Characterization of glycopeptides by combining collision-induced dissociation and electron-transfer dissociation mass spectrometry data. Rapid Commun. Mass Spectrom. 23, 161–170 (2009)

    Article  CAS  PubMed  Google Scholar 

  27. Wuhrer M., Balog C., Koeleman C.A., Deelder A.M., Hokke C.H.: New features of site-specific horseradish peroxidase (HRP) glycosylation uncovered by nano-LC-MS with repeated ion-isolation/fragmentation cycles. Biochim. Biophys. Acta. 1723, 229–239 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. Itoh S., Kawasaki N., Harazono A., Hashii N., Matsuishi Y., Kawanishi T., Hayakawa T.: Characterization of a gel-separated unknown glycoprotein by liquid chromatography/multistage tandem mass spectrometry: analysis of rat brain thy-1 separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. J. Chromatogr. A. 1094, 105–117 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. Gnanesh Kumar B.S., Pohlentz G., Schulte M., Mormann M., Siva Kumar N.: Jack bean α-mannosidase: amino acid sequencing and N-glycosylation analysis of a valuable glycomics tool. Glycobiology. 24, 252–261 (2014)

    Article  CAS  PubMed  Google Scholar 

  30. Gnanesh Kumar B.S., Pohlentz G., Schulte M., Mormann M., Siva Kumar N.: N-glycan analysis of mannose/glucose specific lectin from Dolichos lablab seeds. Int. J. Biol. Macromol. 69, 400–407 (2014)

    Article  Google Scholar 

  31. Wuhrer M., Deelder A.M., van der Burgt Y.E.: Mass spectrometric glycan rearrangements. Mass Spectrom. Rev. 30, 664–680 (2011)

    Article  CAS  PubMed  Google Scholar 

  32. Kaku, H., Tanaka, Y., Tazaki, K., Minami, E., Mizuno, H., Shibuya, N.: Sialylated oligosaccharide-specific plant lectin from Japanese elderberry (Sambucus sieboldiana) bark tissue has a homologous structure to type II ribosome-inactivating proteins, ricin and abrin. cDNA cloning and molecular modeling study. J. Biol. Chem. 271, 1480–1485 (1996)

  33. Iglesias R., Citores L., Ferreras J.M., Pérez Y., Jiménez P., Gayoso M.J., Olsnes S., Tamburino R., Di Maro A., Parente A., Girbés T.: Sialic acid-binding dwarf elder four-chain lectin displays nucleic acid N-glycosidase activity. Biochimie. 92, 71–80 (2010)

    Article  CAS  PubMed  Google Scholar 

  34. Strasser R.: Biological significance of complex N-glycans in plants and their impact on plant physiology. Front. Plant Sci. 5, 363 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  35. Debray H., Wieruszeski J.M., Strecker G., Franz H.: Structural analysis of the carbohydrate chains isolated from mistletoe (Viscum album) lectin I. Carbohydr. Res. 236, 135–143 (1992)

    Article  CAS  PubMed  Google Scholar 

  36. Pascal, J.M., Day, P.J., Monzingo, A.F., Ernst, S.R., Robertus, J.D., Iglesias, R., Pérez, Y., Férreras, J.M., Citores, L., Girbés, T.: 2.8-Å crystal structure of a nontoxic type-II ribosome-inactivating protein, ebulin l. Proteins. 43, 319–326 (2001)

  37. Rutenber, E., Robertus, J.D.: Structure of ricin B-chain at 2.5 Å resolution. Proteins. 10, 260–269 (1991)

  38. Niwa H., Tonevitsky A.G., Agapov I.I., Saward S., Pfüller U., Palmer R.A.: Crystal structure at 3 Å of mistletoe lectin I, a dimeric type-II ribosome-inactivating protein, complexed with galactose. Eur. J. Biochem. 270, 2739–2749 (2003)

    Article  CAS  PubMed  Google Scholar 

  39. Lannoo N., Van Damme E.J.: N-glycans: the making of a varied toolbox. Plant Sci. 239, 67–83 (2015)

    Article  CAS  PubMed  Google Scholar 

  40. Greenwood J.S., Stinissen H.M., Peumans W.J., Chrispeels M.J.: Sambucus nigra Agglutinin is located in protein bodies in the phloem parenchyma of bark. Planta. 167, 275–278 (1986)

    Article  CAS  PubMed  Google Scholar 

  41. Sturm A., Chrispeels M.J.: The high mannose oligosaccharide of phytohemagglutinin is attached to asparagine 12 and the modified oligosaccharide to asparagine 60. Plant Physiol. 81, 320–322 (1986)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim B.S., Hwang H.S., Park H., Kim H.H.: Effects of selective cleavage of high-mannose-type glycans of Maackia amurensis leukoagglutinin on sialic acid-binding activity. Biochim. Biophys. Acta. 1850, 1815–1821 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Avadhesha Surolia (AS) is a Bhatnagar Fellow of the Council of Scientific and Industrial Research (CSIR), India. Gnanesh Kumar B S thank Department of Biotechnology, Government of India for Research Associateship (DBT-RA). This work has been supported by a grant by CSIR to AS. Authors thank Mrs. Sunitha Prakash, Proteomics facility, Molecular Biophysics Unit, IISc, Bangalore for helping in mass spectrometry data acquisition. This facility is supported by the Proteomics grant of Department of Biotechnology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avadhesha Surolia.

Ethics declarations

Conflict of interest

There is no conflict of interest

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnanesh Kumar, B.S., Surolia, A. Site specific N-glycan profiling of NeuAc(α2-6)-Gal/GalNAc-binding bark Sambucus nigra agglutinin using LC–MSn revealed differential glycosylation. Glycoconj J 33, 907–915 (2016). https://doi.org/10.1007/s10719-016-9698-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9698-7

Keywords

Navigation