Skip to main content

Advertisement

Log in

Critical roles of Asp270 and Trp273 in the α-repeat of the carbohydrate-binding module of endo-1,3-β-glucanase for laminarin-binding avidity

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

A carbohydrate-binding module from family 13 (CBM13), appended to the catalytic domain of endo-1,3-β-glucanase from Cellulosimicrobium cellulans, was overexpressed in E. coli, and its interactions with β-glucans, laminarin and laminarioligosaccharides, were analyzed using surface plasmon resonance biosensor and isothermal titration calorimetry. The association constants for laminarin and laminarioligosaccharides were determined to be approximately 106 M−1 and 104 M−1, respectively, indicating that 2 or 3 binding sites in the α-, β-, and γ-repeats of CBM13 are involved in laminarin binding in a cooperative manner. The binding avidity is approximately 2-orders higher than the monovalent binding affinity. Mutational analysis of the conserved Asp residues in the respective repeats showed that the α-repeat primarily contributes to β-glucan binding. A Trp residue is predicted to be exposed to the solvent only in the α-repeat and would contribute to β-glucan binding. The α-repeat bound β-glucan with an affinity of approximately 104 M−1, and the other repeats additionally bound laminarin, resulting in the increased binding avidity. This binding is unique compared to the recognition mode of another CBM13 from Streptomyces lividans xylanase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CBM:

Carbohydrate-binding module

SPR:

Surface plasmon resonance

ITC:

Isothermal titration calorimetry

His-tag:

Polyhistidine-tag

PCR:

Polymerase chain reaction

Ni-NTA:

Ni-nitrilotriacetic acid

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

CD:

Circular dichroism

DLS:

Dynamic light scattering

References

  1. Boraston, A.B., Bolam, D.N., Gilbert, H.J., Davies, G.J.: Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J. 382, 769–781 (2004)

    Article  PubMed  CAS  Google Scholar 

  2. Shoseyov, O., Shani, Z., Levy, I.: Carbohydrate binding modules: biochemical properties and novel applications. Microbiol. Mol. Biol. Rev. 70, 283–295 (2006)

    Article  PubMed  CAS  Google Scholar 

  3. http://www.cazy.org/Carbohydrate-Binding-Modules.html

  4. Ferrer, P.: Revisiting the Cellulosimicrobium cellulans yeast-lytic β-1,3-glucanases toolbox: a review. Microb. Cell Fact. 5, 10 (2006)

    Article  PubMed  Google Scholar 

  5. Tanabe, Y., Pang, Z., Oda, M.: Cloning and sequencing of endo-1,3-β-glucanase from Cellulosimicrobium cellulans. J. Biol. Macromol. 8, 60–63 (2008)

    Article  CAS  Google Scholar 

  6. Notenboom, V., Boraston, A.B., Williams, S.J., Kilburn, D.G., Rose, D.R.: High-resolution crystal structures of the lectin-like xylan binding domain from Streptomyces lividans xylanase 10A with bound substrates reveal a novel mode of xylan binding. Biochemistry 41, 4246–4254 (2002)

    Article  PubMed  CAS  Google Scholar 

  7. Fujimoto, Z., Kuno, A., Kaneko, S., Kobayashi, H., Kusakabe, I., Mizuno, H.: Crystal structures of the sugar complexes of Streptomyces olivaceoviridis E-86 xylanase: sugar binding structure of the family 13 carbohydrate binding module. J. Mol. Biol. 316, 65–78 (2002)

    Article  PubMed  CAS  Google Scholar 

  8. Fujimoto, Z., Kaneko, S., Kuno, A., Kobayashi, H., Kusakabe, I., Mizuno, H.: Crystal structures of decorated xylooligosaccharides bound to a family 10 xylanase from Streptomyces olivaceoviridis E-86. J. Biol. Chem. 279, 9606–9614 (2004)

    Article  PubMed  CAS  Google Scholar 

  9. Arnold, K., Bordoli, L., Kopp, J., Schwede, T.: The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006)

    Article  PubMed  CAS  Google Scholar 

  10. Boraston, A.B., Tomme, P., Amandoron, E.A., Kilburn, D.G.: A novel mechanism of xylan binding by a lectin-like module from Streptomyces lividans xylanase 10A. Biochem. J. 350, 933–941 (2000)

    Article  PubMed  CAS  Google Scholar 

  11. Schärpf, M., Connelly, G.P., Lee, G.M., Boraston, A.B., Warren, R.A., McIntosh, L.P.: Site-specific characterization of the association of xylooligosaccharides with the CBM13 lectin-like xylan binding domain from Streptomyces lividans xylanase 10A by NMR spectroscopy. Biochemistry 41, 4255–4263 (2002)

    Article  PubMed  Google Scholar 

  12. Tanaka, S., Aketagawa, J., Takahashi, S., Shibata, Y., Tsumuraya, Y., Hashimoto, Y.: Activation of a limulus coagulation factor G by (1→3)-β-D-glucans. Carbohydr. Res. 218, 167–174 (1991)

    Article  CAS  Google Scholar 

  13. Oda, M., Azuma, T.: Reevaluation of stoichiometry and affinity/avidity in interactions between anti-hapten antibodies and mono- or multi-valent antigens. Mol. Immunol. 37, 1111–1122 (2000)

    Article  PubMed  CAS  Google Scholar 

  14. Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K., Pease, L.R.: Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989)

    Article  PubMed  CAS  Google Scholar 

  15. Alahuhta, M., Xu, Q., Bomble, Y.J., Brunecky, R., Adney, W.S., Ding, S.Y., Himmel, M.E., Lunin, V.V.: The unique binding mode of cellulosomal CBM4 from Clostridium thermocellum cellobiohydrolase A. J. Mol. Biol. 402, 374–387 (2010)

    Article  PubMed  CAS  Google Scholar 

  16. Schouppe, D., Rougé, P., Lasanajak, Y., Barre, A., Smith, D.F., Proost, P., Van Damme, E.J.: Mutational analysis of the carbohydrate binding activity of the tobacco lectin. Glycoconj. J. 27, 613–623 (2010)

    Article  PubMed  CAS  Google Scholar 

  17. Salazar, O., Molitor, J., Lienqueo, M.E., Asenjo, J.A.: Overproduction, purification, and characterization of β-1,3-glucanase type II in Escherichia coli. Protein Expr. Purif. 23, 219–225 (2001)

    Article  PubMed  CAS  Google Scholar 

  18. Li, N., Shi, P., Yang, P., Wang, Y., Luo, H., Bai, Y., Zhou, Z., Yao, B.: A xylanase with high pH stability from Streptomyces sp. S27 and its carbohydrate-binding module with/without linker-region-truncated versions. Appl. Microbiol. Biotechnol. 83, 99–107 (2009)

    Article  PubMed  CAS  Google Scholar 

  19. Tanabe, Y., Oda, M.: Molecular characterization of endo-1,3-β-glucanase from Cellulosimicrobium cellulans: effects of carbohydrate-binding module on enzymatic function and stability. BBA - Proteins Proteomics 1814, 1713–1719 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Takahiro Maruno of Osaka University and Prof. Yuji Kobayashi of Osaka University of Pharmaceutical Sciences for technical support and helpful discussion. This work was partly performed under the Joint Usage/Research Program of Medical Research Institute, Tokyo Medical and Dental University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Oda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamashiro, T., Tanabe, Y., Ikura, T. et al. Critical roles of Asp270 and Trp273 in the α-repeat of the carbohydrate-binding module of endo-1,3-β-glucanase for laminarin-binding avidity. Glycoconj J 29, 77–85 (2012). https://doi.org/10.1007/s10719-011-9366-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-011-9366-x

Keywords

Navigation