Skip to main content

Advertisement

Log in

Bovine Muc1 inhibits binding of enteric bacteria to Caco-2 cells

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Inhibition of bacterial adhesion to intestinal epithelial receptors by the consumption of natural food components is an attractive strategy for the prevention of microbial related gastrointestinal illness. We hypothesised that Muc1, a highly glycosylated mucin present in cows’ milk, may be one such food component. Purified bovine Muc1 was tested for its ability to inhibit binding of common enteric bacterial pathogens to Caco-2 cells grown in vitro. Muc1 caused dose-dependent binding inhibition of Escherichia coli, Salmonella enterica serovar Typhimurium (S. Typhimurium), Staphylococcus aureus and Bacillus subtilis. This inhibition was more pronounced for the Gram negative compared with Gram positive bacteria. It was also demonstrated that Muc1, immobilised on a membrane, bound all these bacterial species in a dose-dependent manner, although there was greater interaction with the Gram negative bacteria. A range of monosaccharides, representative of the Muc1 oligosaccharide composition, were tested for their ability to prevent binding of E. coli and S. Typhimurium to Caco-2 cells. Inhibition was structure dependent with sialic acid, L(-) fucose and D(+) mannose significantly inhibiting binding of both Gram negative species. N-acetylglucosamine and N-acetylgalactosamine significantly inhibited binding of E. coli whilst galactose, one of the most abundant Muc1 monosaccharides, showed the strongest inhibition against S. Typhimurium. Treatment with sialidase significantly decreased the inhibitory properties of Muc1, demonstrating the importance of sialic acid in adhesion inhibition. It is concluded that bovine Muc1 prevents binding of bacteria to human intestinal cells and may have a role in preventing the binding of common enteropathogenic bacteria to human intestinal epithelial surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. World Health Organization Media Centre Food safety and foodborne illness. Factsheet No 237 (2002)

  2. Pizarro-Cerda, J., Cossart, P.: Bacterial adhesion and entry into host cells. Cell. 124, 715–727 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. Niemann, H., Schubert, W., Heinz, D.: Adhesins and invasins of pathogenic bacteria: a structural view. Microbes. Infect. 6, 101–112 (2004)

    Article  CAS  PubMed  Google Scholar 

  4. Falkow, S., Isberg, R., Portnoy, D.: The interaction of bacteria with mammalian cells. Annu. Rev. Cell Biol. 8, 333–363 (1992)

    Article  CAS  PubMed  Google Scholar 

  5. Mayer, L.: Mucosal immunity. Pediatrics. 111, 1595–6000 (2003)

    PubMed  Google Scholar 

  6. Patton, S.: Some practical implications of the milk mucins. J. Dairy Sci. 82, 1115–1117 (1999)

    CAS  PubMed  Google Scholar 

  7. Van Klinken, B.J., Dekker, J., Büller, H.A., Einerhand, A.W.: Mucin gene structure and expression: protection vs. adhesion. Am. J. Physiol. 269(5), G613–627 (1995)

    PubMed  Google Scholar 

  8. Lillehoj, E.P., Hyun, S.W., Kim, B.T., Zhang, X.G., Lee, D.I., Rowland, S., Kim, K.C.: Muc1 mucins on the cell surface are adhesion sites for Pseudomonas aeruginosa. Am. J. Physiol. Lung Cell Mol. Physiol. 280, L181–187 (2001)

    CAS  PubMed  Google Scholar 

  9. Lillehoj, E.P., Kim, B.T., Kim, K.C.: Identification of Pseudomonas aeruginosa flagellin as an adhesin for Muc1 mucin. Am. J. Physiol. Lung Cell Mol. Physiol. 282, 751–756 (2002)

    Google Scholar 

  10. Ofek, I., Hasty, D., Sharon, N.: Anti-adhesion therapy of bacterial diseases: prospects and problems. FEMS Immunol. Med. Microbiol. 38, 181–191 (2003)

    Article  CAS  PubMed  Google Scholar 

  11. Sharon, N.: Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochimica et Biophysica Acta. 1760, 527–537 (2006)

    CAS  PubMed  Google Scholar 

  12. Sharon, N., Ofek, I.: Safe as mother’s milk: carbohydrates as future anti-adhesion drugs for bacterial diseases. Glycoconj. J. 17, 659–664 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. Matsumoto, M., Hara, K., Kimata, H., Benno, Y., Shimamoto, C.: Exfoliation of Helicobacter pylori from gastric mucin by glycopolypeptides from buttermilk. J. Dairy Sci. 88, 49–54 (2005)

    CAS  PubMed  Google Scholar 

  14. Martin, M., Martin-Sosa, S., Hueso, P.: Binding of milk oligosaccharides by several enterotoxigenic Escherichia coli strains isolated from calves. Glycoconj. J. 19, 5–11 (2002)

    Article  CAS  PubMed  Google Scholar 

  15. Kvistgaard, A.S., Pallesen, L.T., Arias, C.F., Lopez, S., Petersen, T.E., Heegaard, C.W., Rasmussen, J.T.: Inhibitory effects of human and bovine milk constituents on rotavirus infections. J. Dairy Sci. 87, 4088–4096 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. Schroten, H., Hanisch, F.G., Plogmann, R., Hacker, J., Uhlenbruck, G., Nobis-Bosch, R., Wahn, V.: Inhibition of adhesion of S-fimbriated Escherichia coli to buccal epithelial cells by human milk fat globule membrane components: a novel aspect of the protective function of mucins in the nonimmunoglobulin fraction. Infect. Immun. 60, 2893–2899 (1992)

    CAS  PubMed  Google Scholar 

  17. McAuley, J.L., Linden, S.K., Png, C.W., King, R.M., Pennington, H.L., Gendler, S.J., Florin, T.H., Hill, G.R., Korolik, V., McGuckin, M.A.: MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. J. Clin. Invest. 117, 2313–2324 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. McGuckin, M.A., Every, A.L., Skene, C.D., Linden, S.K., Chionh, Y.T., Swierczak, A., McAuley, J., Harbour, S., Kaparakis, M., Ferrero, R., Sutton, P.: Muc1 mucin limits both Helicobacter pylori colonization of the murine gastric mucosa and associated gastritis. Gastroenterology. 133, 1210–1218 (2007)

    Article  CAS  PubMed  Google Scholar 

  19. Sando, L., Pearson, R., Gray, C., Parker, P., Hawken, R., Thomson, P., Meadows, J., Kongsuwan, K., Smith, S., Tellam, R.L.: Bovine Muc1: a polymorphic gene encoding a highly glycosylated mucin that protects epithelial cells from bacterial attachment. J. Dairy Sci. 92, 5276–5291 (2009)

    Article  CAS  PubMed  Google Scholar 

  20. Behrens, I., Kissel, T.: Do cell culture conditions influence the carrier-mediated transport of peptides in Caco-2 cell monolayers? Eur. J. Pharm. Sci. 19, 433–442 (2003)

    Article  CAS  PubMed  Google Scholar 

  21. Engle, M.J., Goetz, G.S., Alpers, D.H.: Caco-2 cells express a combination of colonocyte and enterocyte phenotypes. Am. J. Physiol. Cell Physiol. 174, 362–369 (1998)

    CAS  Google Scholar 

  22. Takahashi, Y., Sandberg, A.L., Ruhl, S., Muller, J., Cisar, J.O.: A specific cell surface antigen of Streptococcus gordonii is associated with bacterial hemagglutination and adhesion to alpha2–3-linked sialic acid-containing receptors. Infect. Immun. 65, 5042–5051 (1997)

    CAS  PubMed  Google Scholar 

  23. Simon, P.M., Goode, P.L., Mobasseri, A., Zopf, D.: Inhibition of Helicobacter pylori binding to gastrointestinal epithelial cells by sialic acid-containing oligosaccharides. Infect. Immun. 65, 750–757 (1997)

    CAS  PubMed  Google Scholar 

  24. Ruhl, S., Cisar, J.O., Sandberg, A.L.: Identification of polymorphonuclear leukocyte and HL-60 cell receptors for adhesins of Streptococcus gordonii and Actinomyces naeslundii. Infect. Immun. 68, 6346–6354 (2000)

    Article  CAS  PubMed  Google Scholar 

  25. Ryan, P.A., Pancholi, V., Fischetti, V.A.: Group A streptococci bind to mucin and human pharyngeal cells through sialic acid-containing receptors. Infect. Immun. 69, 7402–7412 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. Sheehan, D., Hrapchak, B.: Theory and practice of Histotechnology, pp. 163, 173–174. Mosby, St. Louis (1980)

    Google Scholar 

  27. Tellam, R., Eisemann, C., Vuocolo, T., Casu, R., Jarmey, J., Bowles, V., Pearson, R.: Role of oligosaccharides in the immune response of sheep vaccinated with Lucilia cuprina larval glycoprotein, peritrophin-95. Int. J. Parasitol. 31, 798–809 (2001)

    Article  CAS  PubMed  Google Scholar 

  28. Bovin, N., Tuzikov, A., Chinarev, A., Gambaryan, A.: Multimeric glycotherapeutics: new paradigm. Glycoconj. J. 21, 471–478 (2004)

    Article  CAS  PubMed  Google Scholar 

  29. Karlsson, K.: Meaning and therapeutic potential of microbial recognition of host glycoconjugates. Mol. Microbiol. 29, 1–11 (1998)

    Article  CAS  PubMed  Google Scholar 

  30. Matrosovich, M., Matrosovich, T., Gray, T., Roberts, N., Klenk, H.: Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc. Natl. Acad. Sci. U.S.A. 101, 4620–4624 (2004)

    Article  CAS  PubMed  Google Scholar 

  31. Thompson, C., Barclay, W., Zambon, M., Pickles, R.: Infection of human airway epithelium by human and avian strains of influenza a virus. J. Virol. 80, 8060–8068 (2006)

    Article  CAS  PubMed  Google Scholar 

  32. Isa, P., Arias, C., Lopez, S.: Role of sialic acids in rotavirus infection. Glycoconj. J. 23, 27–37 (2006)

    Article  CAS  PubMed  Google Scholar 

  33. Coppa, G., Zampini, L., Galeazzi, T., Facinelli, B., Ferrante, L., Capretti, R., Orazio, G.: Human milk oligosaccharides inhibit the adhesion to Caco-2 cells of diarrheal pathogens: Escherichia coli, Vibrio cholerae, and Salmonella fyris. Pediatr. Res. 59, 377–382 (2006)

    Article  CAS  PubMed  Google Scholar 

  34. Gallagher, J., Morris, A., Dexter, T.: Identification of two binding sites for wheat-germ agglutinin on polylactosamine-type oligosaccharides. Biochem. J. 231, 115–122 (1985)

    CAS  PubMed  Google Scholar 

  35. Ivatt, R., Reeder, J., Clark, G.: Structural and conformational features that affect the interaction of polylactosaminoglycans with immobilized wheat germ agglutinin. Biochimica et Biophysica Acta. 883, 253–264 (1986)

    CAS  PubMed  Google Scholar 

  36. Charland, N., Kellens, J.T., Caya, F., Gottschalk, M.: Agglutination of Streptococcus suis by sialic acid-binding lectins. J. Clin. Microbiol. 33, 2220–2222 (1995)

    CAS  PubMed  Google Scholar 

  37. Meng, Q., Kerley, M.S., Russel, T.J., Allee, G.L.: Lectin-like activity of Escherichia coli K88, Salmonella choleraesuis, and Bifidobacteria pseudolongum of porcine gastrointestinal origin. J. Anim. Sci. 76, 551–556 (1998)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Geoffrey Gardiner Dairy Foundation and the Co-operative Research Centre for Innovative Dairy Products. Access to the Australian Proteome Analysis Facility was aided by the Australian Government’s Major National Research Facilities Program. The authors thank Parmalat Australia Ltd. for their donation of cream for isolation of Muc1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip Parker.

Additional information

Author’s contributions

PP and LS contributed equally to this research. PP carried out all the direct binding and inhibition assays and monosaccharide binding studies. LS and RP carried out the protein purification, SDS-PAGE analysis and sialidase treatment. RT, SS and KK participated in the conception, design and overall coordination of the study and provided advice on the various assays. All authors have read and approved the final manuscript.

Phillip Parker and Lillian Sando contributed equally to this research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, P., Sando, L., Pearson, R. et al. Bovine Muc1 inhibits binding of enteric bacteria to Caco-2 cells. Glycoconj J 27, 89–97 (2010). https://doi.org/10.1007/s10719-009-9269-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-009-9269-2

Keywords

Navigation