Skip to main content

Advertisement

Log in

Modulation of PP2A activity by Jacalin: is it through caveolae and ER chaperones?

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Plant lectins have been reported to affect the proliferation of different human cancer cell line probably by binding to the specific carbohydrate moieties. In the present study, Badan labeled single cysteine mutant (present in the caveolin-1 binding motif) of jacalin (rJacalin) was found to penetrate the target membrane, indicating a protein-protein or protein-membrane interaction apart from its primary mode of binding i.e. protein-carbohydrate interaction. Further, Jacalin treatment has resulted in the movement of the GFP-Caveolin-1 predominantly at the cell-cell contact region with much restricted dynamics. Jacalin treatment has resulted in the perinuclear accumulation of PP2A and dissociation of the PHAP1/PP2A complex. PP2A was found to act as a negative regulator of ERK signaling and a significant decrease in the phosphorylation level of MEK and AKT (T308) in A431. In addition, we have also identified several ER resident proteins including molecular chaperones like ORP150, Hsp70, Grp78, BiP of A431 cells, which were bound to the Jacalin-sepharose column. Among various ER chaperones that were identified, ORP150 was found to present on the cell surface of A431 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

RT:

Room Temperature

IPA:

Immunoprecipitation assay

TIRFM:

Total Internal Reflection Fluorescence Microscopy

References

  1. Sharon, N.: Lectins: from obscurity into the limelight. Protein Sci. 7, 2042–2048 (1998). doi:10.1002/pro.5560070922

    Article  CAS  PubMed  Google Scholar 

  2. Lis, H. Sharon, N.: Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem. Rev. 98, 637–674 (1998). doi:10.1021/cr940413g

    Article  CAS  PubMed  Google Scholar 

  3. Jordinson, M. El Hariry, I. Calnan, D. Calam, J. Pignatelli, M.: Vicia faba agglutinin, the lectin present in broad beans, stimulates differentiation of undifferentiated colon cancer cells. Gut 44, 709–714 (1999)

    Article  CAS  PubMed  Google Scholar 

  4. Sahasrabuddhe, A.A. Ahmed, N. Krishnasastry, M.V.: Stress-induced phosphorylation of caveolin-1 and p38, and down-regulation of EGFr and ERK by the dietary lectin jacalin in two human carcinoma cell lines. Cell Stress Chaperones 11, 135–147 (2006). doi:10.1379/CSC-160R.1

    Article  CAS  PubMed  Google Scholar 

  5. Tamma, S.M. Kalyanaraman, V.S. Pahwa, S. Dominguez, P. Modesto, R.R.: The lectin jacalin induces phosphorylation of ERK and JNK in CD4+ T cells. J. Leukoc. Biol. 73, 682–688 (2003). doi:10.1189/jlb.1102534

    Article  CAS  PubMed  Google Scholar 

  6. Yu, L.G. Packman, L.C. Weldon, M. Hamlett, J. Rhodes, J.M.: Protein phosphatase 2A, a negative regulator of the ERK signaling pathway, is activated by tyrosine phosphorylation of putative HLA class II-associated protein I (PHAPI)/pp 32 in response to the antiproliferative lectin, jacalin. J. Biol. Chem. 279, 41377–41383 (2004). doi:10.1074/jbc.M400017200

    Article  CAS  PubMed  Google Scholar 

  7. Ryder, S.D. Smith, J.A. Rhodes, J.M.: Peanut lectin: a mitogen for normal human colonic epithelium and human HT29 colorectal cancer cells. J. Natl. Cancer Inst. 84, 1410–1416 (1992). doi:10.1093/jnci/84.18.1410

    Article  CAS  PubMed  Google Scholar 

  8. Yu, L.G. Fernig, D.G. White, M.R. Spiller, D.G. Appleton, P. Evans, R.C. Grierson, I. Smith, J.A. Davies, H. Gerasimenko, O.V. Petersen, O.H. Milton, J.D. Rhodes, J.M.: Edible mushroom (Agaricus bisporus) lectin, which reversibly inhibits epithelial cell proliferation, blocks nuclear localization sequence-dependent nuclear protein import. J. Biol. Chem. 274, 4890–4899 (1999). doi:10.1074/jbc.274.8.4890

    Article  CAS  PubMed  Google Scholar 

  9. Yu, L.G. Milton, J.D. Fernig, D.G. Rhodes, J.M.: Opposite effects on human colon cancer cell proliferation of two dietary Thomsen-Friedenreich antigen-binding lectins. J. Cell. Physiol. 186, 282–287 (2001). doi:10.1002/1097-4652(200102)186:2<282::AID-JCP1028>3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  10. Lafont, V. Dornand, J. Covassin, L. Liautard, J.P. Favero, J.: The lectin jacalin triggers CD4-mediated lymphocyte signaling by binding CD4 through a protein-protein interaction. J. Leukoc. Biol. 59, 691–696 (1996)

    CAS  PubMed  Google Scholar 

  11. Nguyen, A.H. Nguyen, V.T. Kamio, Y. Higuchi, H.: Single-molecule visualization of environment-sensitive fluorophores inserted into cell membranes by staphylococcal gamma-hemolysin. Biochemistry 45, 2570–2576 (2006). doi:10.1021/bi0514156

    Article  CAS  PubMed  Google Scholar 

  12. Pany, S. Krishnasastry, M.V.: Aromatic residues of Caveolin-1 binding motif of alpha-hemolysin are essential for membrane penetration. Biochem. Biophys. Res. Commun. 363, 197–202 (2007). doi:10.1016/j.bbrc.2007.08.132

    Article  CAS  PubMed  Google Scholar 

  13. Aoki, T. Hagiwara, H. Matsuzaki, T. Suzuki, T. Takata, K.: Internalization of caveolae and their relationship with endosomes in cultured human and mouse endothelial cells. Anat. Sci. Int. 82, 82–97 (2007). doi:10.1111/j.1447-073X.2006.00160.x

    Article  CAS  PubMed  Google Scholar 

  14. Pelkmans, L. Zerial, M.: Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae. Nature 436, 128–133 (2005). doi:10.1038/nature03866

    Article  CAS  PubMed  Google Scholar 

  15. Tagawa, A. Mezzacasa, A. Hayer, A. Longatti, A. Pelkmans, L. Helenius, A.: Assembly and trafficking of caveolar domains in the cell: caveolae as stable, cargo-triggered, vesicular transporters. J. Cell Biol. 170, 769–779 (2005). doi:10.1083/jcb.200506103

    Article  CAS  PubMed  Google Scholar 

  16. Ahmed, N. Dasari, S. Srivastava, S.S. Sneh, A. Ahmad, A. Islam, K.M. Krishnasastry, M.V.: Taxol and 10-deacetylbaccatinIII induce distinct changes in the dynamics of caveolae. FEBS Lett. 582, 3595–3600 (2008). doi:10.1016/j.febslet.2008.09.029

    Article  CAS  PubMed  Google Scholar 

  17. Li, L. Ren, C.H. Tahir, S.A. Ren, C. Thompson, T.C.: Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Mol. Cell. Biol. 23, 9389–9404 (2003). doi:10.1128/MCB.23.24.9389-9404.2003

    Article  CAS  PubMed  Google Scholar 

  18. Zuluaga, S. Alvarez-Barrientos, A. Gutierrez-Uzquiza, A. Benito, M. Nebreda, A.R. Porras, A.: Negative regulation of Akt activity by p38alpha MAP kinase in cardiomyocytes involves membrane localization of PP2A through interaction with caveolin-1. Cell. Signal. 19, 62–74 (2007). doi:10.1016/j.cellsig.2006.05.032

    Article  CAS  PubMed  Google Scholar 

  19. Henkhaus, R.S. Roy, U.K. Cavallo-Medved, D. Sloane, B.F. Gerner, E.W. Ignatenko, N.A.: Caveolin-1-mediated expression and secretion of kallikrein 6 in colon cancer cells. Neoplasia 10, 140–148 (2008). doi:10.1593/neo.07817

    Article  CAS  PubMed  Google Scholar 

  20. Andrabi, S. Gjoerup, O.V. Kean, J.A. Roberts, T.M. Schaffhausen, B.: Protein phosphatase 2A regulates life and death decisions via Akt in a context-dependent manner. Proc. Natl. Acad. Sci. USA 104, 19011–19016 (2007). doi:10.1073/pnas.0706696104

    Article  CAS  PubMed  Google Scholar 

  21. Fukukawa, C. Tanuma, N. Okada, T. Kikuchi, K. Shima, H.: pp 32/ I-1(PP2A) negatively regulates the Raf-1/MEK/ERK pathway. Cancer Lett. 226, 155–160 (2005). doi:10.1016/j.canlet.2004.11.026

    Article  CAS  PubMed  Google Scholar 

  22. Liu, W. Akhand, A.A. Takeda, K. Kawamoto, Y. Itoigawa, M. Kato, M. Suzuki, H. Ishikawa, N. Nakashima, I.: Protein phosphatase 2A-linked and -unlinked caspase-dependent pathways for downregulation of Akt kinase triggered by 4-hydroxynonenal. Cell Death Differ. 10, 772–781 (2003). doi:10.1038/sj.cdd.4401238

    Article  CAS  PubMed  Google Scholar 

  23. Kuo, Y.C. Huang, K.Y. Yang, C.H. Yang, Y.S. Lee, W.Y. Chiang, C.W.: Regulation of phosphorylation of Thr-308 of Akt, cell proliferation, and survival by the B55alpha regulatory subunit targeting of the protein phosphatase 2A holoenzyme to Akt. J. Biol. Chem. 283, 1882–1892 (2008). doi:10.1074/jbc.M709585200

    Article  CAS  PubMed  Google Scholar 

  24. Ory, S. Zhou, M. Conrads, T.P. Veenstra, T.D. Morrison, D.K.: Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14–3-3 binding sites. Curr. Biol. 13, 1356–1364 (2003). doi:10.1016/S0960-9822(03)00535-9

    Article  CAS  PubMed  Google Scholar 

  25. Yu, L.G. Andrews, N. Weldon, M. Gerasimenko, O.V. Campbell, B.J. Singh, R. Grierson, I. Petersen, O.H. Rhodes, J.M.: An N-terminal truncated form of Orp150 is a cytoplasmic ligand for the anti-proliferative mushroom Agaricus bisporus lectin and is required for nuclear localization sequence-dependent nuclear protein import. J. Biol. Chem. 277, 24538–24545 (2002). doi:10.1074/jbc.M203550200

    Article  CAS  PubMed  Google Scholar 

  26. Shin, B.K. Wang, H. Yim, A.M. Le Naour, F. Brichory, F. Jang, J.H. Zhao, R. Puravs, E. Tra, J. Michael, C.W. Misek, D.E. Hanash, S.M.: Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J. Biol. Chem. 278, 7607–7616 (2003). doi:10.1074/jbc.M210455200

    Article  CAS  PubMed  Google Scholar 

  27. Namba, T. Hoshino, T. Tanaka, K. Tsutsumi, S. Ishihara, T. Mima, S. Suzuki, K. Ogawa, S. Mizushima, T.: Up-regulation of 150-kDa oxygen-regulated protein by celecoxib in human gastric carcinoma cells. Mol. Pharmacol. 71, 860–870 (2007). doi:10.1124/mol.106.027698

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. G. C. Mishra, Prof. A. Surolia and Dr. M. Islam Khan for valuable comments, and Mr Anil Lotke and Ms Ashwini Atre for technical assistance. N.A, A.R, S.S, and A.S. are recipients of a senior research fellowship from CSIR and UGC. S.P. is currently postdoctoral fellow, college of Pharmacy, University of Houston, Texas. Financial assistance was provided by the Department of Biotechnology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musti V. Krishnasastry.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Video SV1

TIRFM video of the HeLa cells expressing GFP-Caveolin-1 before treatment of Jacalin. The normal ‘kiss-and-run’ dynamics of caveolae are observed [14]. (QT 2506 kb)

Video SV2

TIRFM video of a GFP- Caveolin-1 expressing HeLa cell 1 h after treatment with Jacalin (2 µg/ml). Note the cell surface withdrawal of GFP- Caveolin-1. (QT 3246 kb)

Video SV3

TIRFM video of a GFP- Caveolin-1 expressing HeLa cell 2 h after treatment with Jacalin (2 µg/ml). Note the restricted movement of GFP- Caveolin-1. (QT 3190 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, N., Pany, S., Rahman, A. et al. Modulation of PP2A activity by Jacalin: is it through caveolae and ER chaperones?. Glycoconj J 27, 723–734 (2010). https://doi.org/10.1007/s10719-009-9258-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-009-9258-5

Keywords

Navigation