Skip to main content
Log in

Eryptosis in hereditary spherocytosis and thalassemia: role of glycoconjugates

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The present work is aimed to study the mechanism of faster erythrocyte clearance in hereditary spherocytosis (HS), a heterogeneous disorders characterized by alterations in the proteins of the red cell membrane skeleton along with different kinds of thalassemia. The maximum exposure of phosphatidylserine (PS) is found in HS compared to those in both α- and β-thalassemia. Interestingly, in HS more PS exposed cells were found in younger erythrocytes compared to normal and the thalassemics where aged cells showed higher loss of PS asymmetry. Loss of sialic acid and GlcNAc bearing glycoconjugates, presumably the glycophorins, was also found upon aging. The loss of PS asymmetry together with the cell surface glycoproteins mediated by membrane vesiculation, seemed to play key role in early clearance of erythrocytes from circulation following a mechanism similar to HbEβ-thalassemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HS:

Hereditory spherocytosis

HE:

Hereditory elliptocytosis

PS:

Phosphatidylserine

FITC:

Fluorescein-5-isothiocyate

AV-FITC:

Fluorescein-5-isothiocyate labeled Annexin V

WGA-FITC:

Fluorescein-5-isothiocyate labeled Wheat Germ Agglutinin

PWM-FITC:

Fluorescein-5-isothiocyate labeled Poke Weed Mitogen

Ca2+/A23187:

1 mM Ca2+ with 4 μM of A23187

GlcNAc:

N-acetyl-D-glucosamine

Neu5Ac:

N-acetyl-D-neuraminic acid

MFI:

Mean fluorescence intensity

SEM:

Standard error of the mean

PBS:

Phosphate buffered saline containing 2.7 mM KCl, 1.5 mM KH2PO4, 137 mM NaCl, 8.1 mM Na2HPO4, 0.01% NaN3 pH 7.4

References

  1. Arese, P. Turrini, F. Schwarzer, E.: Band 3/complement mediated recognition and removal of normally senescent and pathological human erythrocytes. Cell Physiol Biochem 16, 133–146 (2005). doi:10.1159/000089839

    Article  CAS  PubMed  Google Scholar 

  2. Bratosin, D. Estaquier, J. Petit, F. Arnoult, D. Quantannens, B. Tissier, J.P. Slomianny, C. Sartiaux, C. Alonso, C. Huart, J.J. Montreuil, J. Ameisen, J.C.: Programmed cell death in mature erythrocytes: a model for investigating death effector pathways operating in the absence of mitochondria. Cell Death Differ 8, 1143–1156 (2001). doi:10.1038/sj.cdd.4400946

    Article  CAS  PubMed  Google Scholar 

  3. Lang, K.S. Lang, P.A. Bauer, C. Duranton, C. Wieder, T. Huber, S.M. Lang, F.: Mechanisms of suicidal erythrocyte death. Cell Physiol Biochem 15, 195–202 (2005). doi:10.1159/000086406

    Article  CAS  PubMed  Google Scholar 

  4. Daugas, E. Cande, C. Kroemer, G.: Erythrocyte: death of a mummy. Cell Death Differ 8, 1131–1133 (2001). doi:10.1038/sj.cdd.4400953

    Article  CAS  PubMed  Google Scholar 

  5. Kay, M.M.B.: Localization of senescent cell antigen on band 3. Proc Natl Acad Sci USA 81, 5753–5757 (1984). doi:10.1073/pnas.81.18.5753

    Article  CAS  PubMed  Google Scholar 

  6. Lutz, H.U. Bussolino, F. Flepp, R. Fasler, S. Stammler, P. Kazatchkine, M.D. Arese, P.: Naturally occurring anti-band-3 antibodies and complement together mediate phagocytosis of oxidatively stressed human erythrocytes. Proc Natl Acad Sci USA 84, 7368–7372 (1987). doi:10.1073/pnas.84.21.7368

    Article  CAS  PubMed  Google Scholar 

  7. Bosman, G.J.C.G.M. Willekens, F.L.A. Were, J.M.: Erythrocyte ageing: a more than superficial resemblance to apoptosis? Cell Physiol Biochem 16, 1–8 (2005). doi:10.1159/000087725

    Article  CAS  PubMed  Google Scholar 

  8. Oldenborg, P.A. Zheleznyak, A. Fang, Y.F. Lagenaur, C.F. Gresham, H.D. Lindberg, F.P.: Role of CD47 as a marker of self on red blood cells. Science 288, 2051–2054 (2000). doi:10.1126/science.288.5473.2051

    Article  CAS  PubMed  Google Scholar 

  9. Connor, J. Pak, C.C. Schroit, A.J.: Exposure of phosphatidylserine in the outer leaflet of human red blood cells: relationship to cell density, cell age, and clearance by mononuclear cells. J Biol Chem 269, 2399–2404 (1994)

    CAS  PubMed  Google Scholar 

  10. Schlegel, R.A. Williamson, P.: Phosphatidylserine, a death knell. Cell Death Differ 8, 551–563 (2001). doi:10.1038/sj.cdd.4400817

    Article  CAS  PubMed  Google Scholar 

  11. Bratosin, D. Mazurier, J. Debray, H. Lecocq, M. Boilly, B. Alonso, C. Moisei, M. Motas, C. Montreuil, J.: Flow cytofluorimetric analysis of young and senescent human erythrocytes probed with lectins. Evidence that sialic acids control their life span. Glycoconj J 12, 258–267 (1995). doi:10.1007/BF00731328

    Article  CAS  PubMed  Google Scholar 

  12. Durocher, J.R. Payne, R.C. Conrad, M.E.: Role of sialic acid in erythrocyte survival. Blood 45, 11–20 (1975)

    CAS  PubMed  Google Scholar 

  13. Lutz, H.U. Fehr, J.: Total sialic acid content of glycophorins during senescence of human red blood cells. J Biol Chem 254, 11177–11180 (1979)

    CAS  PubMed  Google Scholar 

  14. Marikovsky, Y. Marikovsky, M.: Clearance of senescent erythrocytes: wheat germ agglutinin distribution on young and old human erythrocytes. Glycoconj J 19, 1–4 (2002). doi:10.1023/A:1022513327982

    Article  CAS  PubMed  Google Scholar 

  15. Aminoff, D. Bruegge, W.F.V. Bell, W.C. Sarpolis, K. Williams, R.: Role of sialic acid in survival of erythrocytes in the circulation: interaction of neuraminidase-treated and untreated erythrocytes with spleen and liver at the cellular level. Proc Natl Acad Sci USA 74, 1521–1524 (1977). doi:10.1073/pnas.74.4.1521

    Article  CAS  PubMed  Google Scholar 

  16. Basu, S. Banerjee, D. Chandra, S. Chakrabarti, A.: Loss of phospholipid membrane asymmetry and sialylated glycoconjugates from erythrocyte surface in haemoglobin Eβ-thalassaemia. Br J Haematol 141, 92–99 (2008). doi:10.1111/j.1365-2141.2008.06995.x

    Article  CAS  PubMed  Google Scholar 

  17. Willekens, F.L.A. Werre, J.M. Groenen-Döpp, Y.A.M. Roerdinkholder-Stoelwinder, B. de Pauw, B. Bosman, G.J.C.G.M.: Erythrocyte vesiculation: a self-protective mechanism? Br J Haematol 141, 549–556 (2008). doi:10.1111/j.1365-2141.2008.07055.x

    Article  CAS  PubMed  Google Scholar 

  18. Delaunay, J.: The molecular basis of hereditary red cell membrane disorders. Blood Rev 21, 1–20 (2007). doi:10.1016/j.blre.2006.03.005

    Article  CAS  PubMed  Google Scholar 

  19. Kuypers, F.A. Yuan, J. Lewis, R.A. Snyder, L.M. Kiefer, C.R. Bunyaratvej, A. Fucharoen, S. Ma, L. Styles, L. de Jong, K. Schrier, S.L.: Membrane phospholipid asymmetry in human thalassemia. Blood 91, 3044–3051 (1998)

    CAS  PubMed  Google Scholar 

  20. Lovrien, R.E. Anderson, R.A.: Stoichiometry of wheat germ agglutinin as a morphology controlling agent and as a morphology protective agent for the human erythrocyte. J Cell Biol 85, 534–548 (1980). doi:10.1083/jcb.85.3.534

    Article  CAS  PubMed  Google Scholar 

  21. Wright, C.S.: Crystal structure of a wheat germ agglutinin/glycophorins-sialoglycopeptide receptor complex. J Biol Chem 267, 14345–14352 (1992)

    CAS  PubMed  Google Scholar 

  22. Wright, C.S. Kellogg, G.E.: Differences in hydropathic properties of ligand binding at four independent sites in wheat germ agglutinin-oligosaccharide crystal complexes. Protein Sci 5, 1466–1476 (1996)

    Article  CAS  PubMed  Google Scholar 

  23. Yokoyama, K. Tarao, T. Osawa, T.: Carbohydrate-binding specificity of pokeweed mitogens. Biochim Biophys Acta 538, 384–396 (1978)

    CAS  PubMed  Google Scholar 

  24. Eber, S. Lux, S.E.: Hereditary spherocytosis-defects in proteins that connect the membrane skeleton to the lipid bilayer. Semin Hematol 41, 118–141 (2004). doi:10.1053/j.seminhematol.2004.01.002

    Article  CAS  PubMed  Google Scholar 

  25. Gallagher, P.G.: Hereditary elliptocytosis: spectrin and protein 4.1R. Semin Hematol 41, 142–164 (2004). doi:10.1053/j.seminhematol.2004.01.003

    Article  CAS  PubMed  Google Scholar 

  26. de Jong, K. Larkin, S.K. Eber, S. Franck, P.F.H. Roelofsen, B. Kuypers, F.A.: Hereditary spherocytosos and elliptocytosis erythrocytes show a normal transbilayer phospholipid distribution. Blood 94, 319–325 (1999)

    PubMed  Google Scholar 

  27. Datta, P. Basu, S. Chakravarty, S.B. Chakravarty, A. Banerjee, D. Chandra, S. Chakrabarti, A.: Enhanced oxidative cross-linking of hemoglobin E with spectrin and loss of erythrocyte membrane asymmetry in hemoglobin Eβ-thalassemia. Blood Cells Mol Dis 37, 77–81 (2006). doi:10.1016/j.bcmd.2006.06.001

    Article  CAS  PubMed  Google Scholar 

  28. Datta, P. Chakrabarty, S. Chakrabarty, A. Chakrabarti, A.: Spectrin interactions of globin chains in presence of phosphate metabolites and hydrogen peroxide: implications in thalassemia. J Biosci 32, 1147–1151 (2007). doi:10.1007/s12038-007-0116-y

    Article  CAS  PubMed  Google Scholar 

  29. Majumder, D. Banerjee, D. Chandra, S. Banerjee, S. Chakrabarti, A.: Red cell morphology in leukemia, hypoplastic anemia and myelodysplastic syndrome. Pathophysiology 13, 217–225 (2006). doi:10.1016/j.pathophys.2006.06.002

    Article  CAS  PubMed  Google Scholar 

  30. Willekens, F.L.A. Were, J.M. Kruijt, J.K. Roerdinkholder-Stoelwinder, B. Groenen-Döpp, Y.A.M. van den Bos, A.G. Bosman, G.J.C.G.M. van Berkel, T.J.C.: Liver Kupffer cells rapidly remove red blood cell-derived vesicles from the circulation by scavenger receptors. Blood 105, 2141–2145 (2005). doi:10.1182/blood-2004-04-1578

    Article  CAS  PubMed  Google Scholar 

  31. Kahane, I. Ben-Chetrit, E. Shifter, A. Rachmilewitz, E.A.: The erythrocyte membrane in β-thalassemia lower sialic acid levels in glycophorin. Biochim Biophys Acta 596, 10–17 (1980). doi:10.1016/0005-2736(80)90166-2

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Chakrabarti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, S., Banerjee, D., Chandra, S. et al. Eryptosis in hereditary spherocytosis and thalassemia: role of glycoconjugates. Glycoconj J 27, 717–722 (2010). https://doi.org/10.1007/s10719-009-9257-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-009-9257-6

Keywords

Navigation