Skip to main content
Log in

Relative amounts of sialic acid and fucose of amniotic fluid glycoconjugates in relation to pregnancy age

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The present knowledge concerning the glycan structures and role of glycoconjugates derived from amniotic fluid is fragmentary and mainly focuses on the individual glycoproteins. The question has arisen as whether the general glycosylation pattern of amniotic fluid glycoconjugates can change with the progression of a normal pregnancy. In the present work we have described the dynamic, quantitative alterations in relative amounts of sialic acid and fucose linked by a variety of anomeric linkages to subterminal oligosaccharide structures of amniotic fluid glycoconjugates in relation to pregnancy age. The analysis was performed in the following groups of amniotic fluids derived from normal pregnancy by lectin dotting method: “2nd trimester” (14–19 weeks), “3rd trimester” (29–37 weeks), “perinatal period” (38–40 weeks) , “delivery at term” (39–41 weeks) and “post date pregnancy” (41–43 weeks). In the “3rd trimester” the amniotic fluid glycoconjugates contained higher relative amounts of glycans terminated by α2-6-linked sialic acid (p < 0.00002) and by α1-6 innermost fucose (p < 0.000001) than those in the 2nd trimester. In contrast, they showed the lower relative amount of fucose linked α1-3 (p < 0.02). At the perinatal period the relative amount of α2-6-linked sialic acid increased (p < 0.03), and it then decreased during delivery (p < 0.02) to the level found in the “3rd trimester” group. In the post date pregnancy all parameters studied increased. The sialyl- and fucosyl-glycotopes of the amniotic fluid glycoconjugates may play an critical role in growth and tissue remodeling of the foetus, as well as may might reflect maturation of a foetus. Additionally, a determination of the glycotope expressions might be helpful in prenatal diagnosis as predictor factors for well being of mother and child.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAA:

Aleuria Aurantia Lectin

MAA:

Maackia amurensis lectin

SNA:

Sambucus nigra lectin

LTA:

Tetragonolobus purpureus lectin

UEA:

Ulex europaeus lectin

References

  1. Sedor FA, Body fluid analysis. In Clinical Chemistry: Principles, Procedures, Correlations, edited by Bishop ML, Duben-Engelkirk JL, Fody EP (Lippincott Williams & Willkins, Philadelphia, 2000), pp. 477–89.

  2. Anderson SC, Endocrinology. In Clinical Chemistry: Principles, Procedures, Correlations, edited by Bishop ML, Duben-Engelkirk JL, Fody EP (Lippincott, Williams & Willkins, Philadelphia, 2000), pp. 396–397.

  3. Mussap M, Fanos V, Piccoli A, Zaninotto M, Padovani EM, Plebani M, Low molecular mass proteins and urinary enzymes in amniotic fluid of healthy pregnant women at progressive stages of gestation, Clin Biochem 29, 51–6 (1996).

    Article  PubMed  CAS  Google Scholar 

  4. Hanisch FG, Peter-Katalinic J, Structural studies on fetal mucins from human amniotic fluid. Core typing of short-chain O-linked glycans, Eur J Biochem 205, 527–35 (1992).

    Article  PubMed  CAS  Google Scholar 

  5. Skarulis MC, Wehmann RE, Nisula BC, Blithe DL, Glycosylation changes in human chorionic gonadotropin and free alpha subunit as gestation progresses, J Clin Endocrinol Metab 75, 91–6 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. Nemansky M, Thotakura NR, Lyons CD, Ye S, Reinhold BB, Reinhold VN, Blithe DL, Developmental changes in the glycosylation of glycoprotein hormone free α subunit during pregnancy, J Biol Chem 273, 12068–76 (1998).

    Article  PubMed  CAS  Google Scholar 

  7. Harirah H, Donia SE, Hsu Ch-D, Amniotic fluid matrix metalloproteinase-9 and interleukin-6 in predicting intra-amniotic infection, Obstet. Gynecol. 99, 80–4 (2002).

    Google Scholar 

  8. Durand G, Seta N, Protein glycosylation and diseases: blood and urinary oligosaccharides as markers for diagnosis and therapeutic monitoring, Clin. Chem. 46, 795–805 (2000).

    PubMed  CAS  Google Scholar 

  9. Rüdiger H, Siebert H-Ch, Solis D, Jimènez-Barbero J, Romero A, Von der Lieth C-W, Diaz-Mauriño T, Gabius H-J, Medical chemistry based on the sugar code: Fundamentals of lectinology and experimental strategies with lectins as targets, Curr Med Chem 7, 389–416 (2000).

    PubMed  Google Scholar 

  10. Clark GF, Oehninger S, Patankar MS, Koistinen R, Dell A, Morris HR, Koistinen H, Seppala M, A role for glycoconjugates in human development: the human feto-embryonic defence system hypothesis, Hum. Reprod. 11, 467–70 (1996).

    PubMed  CAS  Google Scholar 

  11. Muramatsu T, Muramatsu H, Carbohydrate antigens expressed on stem cells and early embryonic cells, Glycoconjugate J 21, 41–5 (2004).

    Article  CAS  Google Scholar 

  12. Van Dijk W, Turner GA, Mackiewicz A, Changes in glycosylation of acute-phase proteins in health and disease: occurrence, regulation and function; Glycosylation Dis. 1, 5–14 (1994).

    Google Scholar 

  13. Carson DD, Farrar JD, Laidlaw J, Wright DA, Selective activation of the N-glycosylation apparatus in uteri by estrogen, J Biol Chem 265, 2947–55 (1990).

    PubMed  CAS  Google Scholar 

  14. Kelm S, Schauer R, Sialic acids in molecular and cellular interactions, Int Rev Cytol 175, 137–240 (1997).

    Article  PubMed  CAS  Google Scholar 

  15. Becker DJ, Lowe JB, Fucose: biosynthesis and biological function in mammals, Glycobiology 13, 41–53 (2003).

    Article  CAS  Google Scholar 

  16. Smith P K, Krohn RI, Hermanson G T, Makia AK, Gartner F H, Provwnzano M D, Fujimoto E K, Goeke NM, Olson B J, Kleuk D C, Measurement of protein using bicinchonic acid, Anal Biochem 150, 1530–9 (1985).

    Google Scholar 

  17. Kątnik I, Jadach J, Krotkiewski H, Gerber J, Investigating the glycosylation of normal and ovarian cancer haptoglobins using digoxigenin-labeled lectins, Glycosylation and Dis, 1, 97–104 (1994).

    Google Scholar 

  18. Bowen JM, Chamley L, Keelan JA, Mitchell MD, Cytokines of the placenta and extra-placental membranes: roles and regulation during human pregnancy and parturition, Placenta 23, 257–73 (2002).

    PubMed  CAS  Google Scholar 

  19. Briese V, Kunkel S, Plath C, Wutzke KD, Plesse R, Sialic acid, steroids and proteohormones in maternal, cord and retroplacental blood, Z. Geburtshilfe Neonatol 203, 63–8 (1999).

    PubMed  CAS  Google Scholar 

  20. Van Dijk W, Brinkman-van der Linden EC, Havenaar EC, Occurrence and possible function of inflammation-induced expression of sialyl Lewis-x on acute-phase proteins; Adv Exp Med Biol 435, 145–50 (1998).

  21. Grosso M, Vitarelli E, Giuffre G, Tuccari G, Barresi G, Expression of Tn, sialosyl-Tn and T antigens in human foetal large intestine, Eur J Histochem 44, 359–63 (2000).

    PubMed  CAS  Google Scholar 

  22. Hampel DJ, Köttgen B, Dudenhausen JW, Köttgen E, Fetal fibronectin as a marker for an imminent (preterm) delivery. A new technique using the glycoprotein lectin immunosorbent assay, J. Immunol. Methods 224, 31–42 (1999).

    Article  PubMed  CAS  Google Scholar 

  23. Orczyk-Pawił owicz M, Hirnle L, Ktnik-Prastowska I, Alterations of N-glycan branching and expression of sialic acid on amniotic fluid alpha-1-acid glycoprotein derived from 2nd and 3rd trimester of normal and prolonged pregnancies Arch Immunol Ther Exp 53, (2005) (in press).

  24. Leitich H, Egarter C, Kaider A, Hohlagschwandtner M, Berghammer P, Husslein P, Cervicovaginal fetal fibronectin as a marker for preterm delivery: A meta-analysis, Am J Obstet Gynecol 180, 1169–76 (1998).

    Google Scholar 

  25. Jones CJP, Kimber SJ, Illingworth I, Aplin JD, Decidual sialylation shows species-specific differences in the pregnant mouse and rat, J Reprod Fertil 106, 241–50 (1996).

    PubMed  CAS  Google Scholar 

  26. Kossowska B, Ferens-Sieczkowska M, Garncarz R, Passowicz-Muszyńska E, Jankowska R, Fucosylation of serum glycoproteins in lung cancer patients, Clin Chem Lab Med 43, 361–69 (2005).

    Article  PubMed  CAS  Google Scholar 

  27. Van Rooijen JJM, Jeschke U, Kamerling JP, Vliegenthart JF, Expression of N-linked sialyl Le(x) determinants and O-glycans in the carbohydrate moiety of human amniotic fluid transferrin during pregnancy, Glycobiology 8, 1053–1064 (1998).

    PubMed  CAS  Google Scholar 

  28. Vallejo V, Reyes-Leyva J, Hernandez J, Ramirez H, Delannoy P, Zenteno E, Differential expression of sialic acid on porcine organs during the maturation process, Comp Biochem Physiol B 126, 415–24 (2000).

    PubMed  CAS  Google Scholar 

  29. Koistinen H, Easton RL, Chiu PCN, Chalabi S, Halttunen M, Dell A, Morris HR, Yeung WSB, Seppala M, Koistinen R, Differences in glycosylation and sperm-egg binding inhibition of pregnancy-related glycodelin, Biol Reprod 69, 1545–51, (2003).

    Article  PubMed  CAS  Google Scholar 

  30. Schwartz-Albiez R, Merling A, Martin S, Haas R, Gross H-J, Cell surface sialylation and ecto-sialyltransferase activity of human CD34 progenitors from peripheral blood and bone marrow, Glycoconjugate J 21, 451–9 (2004).

    Article  CAS  Google Scholar 

  31. Crocker PR, Varki A, Siglecs, sialic acids and innate immunity, Trends in Immunology 22, 337–42 (2001).

    Article  PubMed  CAS  Google Scholar 

  32. Jeschke U, Stahn R, Goletz C, Wang XY, Briese V, Friese K, HCG in trophoblast tumour cells of the cell line Jeg3 and hCG isolated from amniotic fluid and serum of pregnant women carry oligosaccharides of the sialyl Lewis x and sialyl Lewis a type, Anticancer Research 23, 1087–92 (2003).

    PubMed  CAS  Google Scholar 

  33. Jeschke U, Xiaoyu W, Volker B, Friese K, Stahn R, Glycodelin and amniotic fluid transferrin as inhibitors of E-selectin-mediated cell adhesion, Histochem Cell Biol 119, 345–54 (2003).

    PubMed  CAS  Google Scholar 

  34. De Graaf TW., Van der Stelt ME, Anbergen MG, Van Dijk W, Inflammation induced expression of sialyl Lewis X-containing glycan structures on α1-acid glycoprotein (orosomucoid) in human sera, J Exp Med 177, 657–66 (1993).

    Article  PubMed  CAS  Google Scholar 

  35. Knibbs R, Goldstein IJ., Ratcliff RM, Shibuya N, Characterization of the carbohydrate binding specificity of the leukoagglutinating lectin from Maackia amurensis. Comparison with other sialic acid-specific lectins, J Biol Chem 266, 83–88 (1991).

    PubMed  CAS  Google Scholar 

  36. Shibuya N, Goldstein IJ, Broekaert WF, Nsimba-Lubaki M, Peeters B, Peumans WJ, The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(α2,6)Gal/GalNAc sequence, J Biol Chem 262, 1596–601 (1987).

    PubMed  CAS  Google Scholar 

  37. Yamashita K, Kochibe N, Ohkura T, Ueda I, Kobata A, Fractionation of L-fucose-containing oligosaccharides on immobilized Aleuria aurantia lectin, J Biol Chem 260, 4688–93 (1985).

    PubMed  CAS  Google Scholar 

  38. Yan L, Wilkins PP, Alvarez-Manilla G, Do SI, Smith DF, Cummings RD, Immobilized Lotus tetragonolobus agglutinin binds oligosaccharides containing the Lex determinant, Glycoconjugate J 14, 45–55 (1997).

    Article  CAS  Google Scholar 

  39. Audette GF, Vandonselaar M, Delbaere LTJ, The 2.2 Å resolution structure of the O(H) blood-group-specific Lectin I from Ulex europaeus, J Mol Biol 304, 423–33 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwona Kątnik-Prastowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orczyk-Pawiłowicz, M., Floriański, J., Zalewski, J. et al. Relative amounts of sialic acid and fucose of amniotic fluid glycoconjugates in relation to pregnancy age. Glycoconj J 22, 433–442 (2005). https://doi.org/10.1007/s10719-005-4437-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-005-4437-5

Keywords

Navigation