Skip to main content

Advertisement

Log in

Electrical Characteristics of Bismuth-Containing Cerium Oxide

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

The ceramics Ce0.9Bi0.1O2–δ was obtained by solid-phase synthesis. It is shown that the obtained samples possess a cubic fluorite structure with the space symmetry group Fm3m. The electrical properties of the solid solution Ce0.9Bi0.1O2–δ solid solution were investigated by means of ac impedance spectrometry. The activation energy of electric conduction falls into two regions – 0.51 eV (400 – 680°C) and 1.6 eV (680 – 800°C); dielectric relaxation is activated at 0.88 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Y. Zhang, R. Knibbe, J. Sunarso, and Y. Zhong, “Recent progress on advanced materials for solid-oxide fuel cells operating below 500°C,” Adv. Mater., 29, 1700132 (2017). URL: https://doi.org/10.3390/inorganics7100118

  2. H. Inaba and H. Tagawa, “Review ceria-based solid electrolytes,” Solid State Ionics, 83, 1 – 16 (1996). URL: https://doi.org/10.1016/0167-2738(95)00229-4

  3. B.Wang, B. Zhu, S. Yun, andW. Zhang, “Fast ionic conduction in semiconductor CeO2–δ electrolyte fuel cells,” NPG Asia Mater., 11, 51 (2019). URL: https://doi.org/10.1038/s41427-019-0152-8

  4. E. L. Brosha, R. Mukundan, D. R. Brown, and F. H. Garzon, “Development of ceramic mixed potential sensors for automotive applications,” Solid State Ionics, 148, 61 – 69 (2002). URL: https://doi.org/10.1016/S0167-2738(02)00103-0

  5. U. Nigge, H. D.Wiemhofer, E.W. J. Romer, and H. J. M. Bouwmeester, “Composites of Ce0.8Gd0.2O1.9 and Gd0.7Ca0.3CoO3 das oxygen permeable membranes for exhaust gas sensor,” Solid State Ionics, 146(1 – 2), 163 (2002). URL: https://doi.org/10.1016/S0167-2738(01)00984-5

  6. D. He, H. Hao, D. Chen, and J. Liu, “Synthesis and application of rare-earth elements (Gd, Sm, and Nd) doped ceria-based solid solutions for methyl mercaptan catalytic decomposition,” Catalysis Today, 281, 559 – 565 (2017). URL: https://doi.org/10.1016/j.cattod.2016. 06.022

  7. A. Vita Catalytic, “Applications of CeO2-based materials,” Catalysts, 10, 576 (2020). URL: https://doi.org/10.3390/catal10050576

  8. Y. Zhang, Ch. Lenser, and N. H. Menzler, “Comparison of solid oxide fuel cell (SOFC) electrolyte materials for operation at 500°C,” Solid State Ionics, 344, 115138 (2020).

    Article  CAS  Google Scholar 

  9. P. Ramos-Alvarez, M. E. Villafuerte-Castrejón, G. González, and M. Cassir, “Ceria-based electrolytes with high surface area and improved conductivity for intermediate temperature solid oxide fuel cells,” J. Mater. Sci., 52(1), 519–532 (2017).

    Article  CAS  Google Scholar 

  10. J. Wang, S. Chen Xie, et al., “Bismuth tungstate/neodymium-doped ceria composite electrolyte for intermediate-temperature solid oxide fuel cell: Sintering aid and composite effect,” J. Power Sources, 428, 105 – 114 (2019).

  11. H. Hu, H. Yan, and Z. Chen, “Sintering and electrical properties of Ce0.8Y0.2O1.9 powders prepared by citric acid-nitrate low-temperature combustion process,” J. Power Sources, 163, 409 – 414 (2006).

    Article  Google Scholar 

  12. L. Bouria, B. Bakiz, A. Benlhachemi, et al., “Electrical properties of a CeO2–Bi2O3, mix system elaborated at 600°C,” Adv. Mater. Sci. Eng., No. 2, 1 – 11 (2012). https://doi.org/10.1155/2012/452383

  13. G. Accardo, D. Frattini, H. C. Ham, and S. P. Yoon, “Direct addition of lithium and cobalt precursors to Ce0.8Gd0.2O1.95 electrolytes to improve microstructural and electrochemical properties in IT-SOFC at lower sintering temperature,” Ceram. Int., 45(7), pt B, 9348 – 9358 (2019).

  14. D. J. L. Brett, A. Atkinson, N. P. Brandon, and S. J. Skinner, “Intermediate temperature solid oxide fuel cells,” Chem. Soc. Rev., 37, 1568 – 1578 (2008).

    Article  CAS  Google Scholar 

  15. D. Liu, D. Ding, M. Liu, et al., “High-performance, ceria-based solid oxide fuel cells fabricated at low temperatures,” J. Power Sources, 241, 454 – 459 (2013).

    Article  CAS  Google Scholar 

  16. G. Accardo, D. Frattini, H. C. Ham, and J. H. Han, “Improved microstructure and sintering temperature of bismuth nano-doped GDC powders synthesized by direct sol-gel combustion,” Ceram. Int., 44, 3800 – 3809 (2018). URL: https://doi.org/10.1016/j.ceramint.2017.11.165

  17. G. Accardo, D. Frattini, H. C. Ham, and S. P. Yoon, “Direct addition of lithium and cobalt precursors to Ce0.8Gd0.2O1.95 electrolytes to improve microstructural and electrochemical properties in IT-SOFC at lower sintering temperature,” Ceram. Int., 45, 9348 – 9358 (2019). URL: https://doi.org/10.1016/j.ceramint.2018.07.209

  18. S. Sanna, V. Esposito, M. Christensen, and N. Pryds, “High ionic conductivity in confined bismuth oxide-based heterostructures,” Apl. Mater., 4, 12110 (2016). URL: https://doi.org/10.1063/1.4971801

  19. X. L. Chen and W. Eysel, “The stabilization of β-Bi2O3 by CeO2,” J. Solid State Chem., 127, 128 – 130 (1996).

    Article  CAS  Google Scholar 

  20. L. Bourja, B. Bakiz, A. Benlhachemi, et al., “Structural and Raman vibrational studies of CeO2–Bi2O3 oxide system,” Adv. Mater. Sci. Eng., No. 2. 1 – 4 (2009).

  21. I. V. Zagaynov, S. V. Fedorov, A. A. Konovalov, and O. S. Antonova, “Perspective ceria-based solid solution of GdxBi0.2–xCe0.8O2,” Mater. Lett. 203. 9 – 12 (2017).

    Article  CAS  Google Scholar 

  22. Z.-C. Li, H. Zhang, and B. Bergman, “Synthesis and characterization of nanostructured Bi2O3-doped cerium oxides fabricated by PVA polymerization process,” Ceram. Int., 34, 1949 – 1953 (2008).

    Article  CAS  Google Scholar 

  23. S. Dikmen, P. Shuk, and M. Greenblatt, “Hydrothermal synthesis and properties of Ce1–xBixO2–δ solid solutions,” Solid State Ionics, 11, 299 – 307 (1998).

    Article  Google Scholar 

  24. G. Li, L. Li, S. Feng, Yao, et al., “An Effective Synthetic Route for a Novel Electrolyte: Nanocrystalline Solid Solution of (CeO2)1–x(BiO1.5)x,” Adv. Mater., 11(2), 146 – 149 (1999).

  25. G. Accardo, L. Spiridigliozzi, G. Dell’Agli, et al., “Morphology and structural stability of bismuth-gadolinium Co-doped ceria electrolyte nanopowders,” Inorganics, 7, 118 (2019). URL: https://doi.org/10.3390/inorganics7100118

  26. K. P. Padmasree, R. A. Montalvo-Lozano, S. M. Montemajor, and A. F. Fuentes, “Electrical conduction and dielectric relaxation process in Ce0.8Y0.2O1.9 electrolyte system,” J. Alloys Compds., 509, 8584 – 8589 (2011).

    Article  CAS  Google Scholar 

  27. R. Gerhardt, “Impedance and dielectric spectroscopy revisited: Distinguishing localized relaxation from long-range conductivity,” J. Phys. Chem. Solids, 55, 1491 – 1506 (1994). URL: https://doi.org/10.1016/0022-3697(94)90575-4

  28. M. Kurumada, H. Hara, and E. Iguchi, “Oxygen vacancies contributing to intragranular electrical conduction of yttria-stabilized zirconia (YSZ) ceramics,” Acta Mater., 53(18), 4839 – 4846 (2005). URL: https://doi.org/10.1016/j.actamat.2005.06.027

  29. N. J. Kidner, N. H. Perry, T. O. Mason, “The brick lauer model revisited: Introducing the nanj-grain composite model,” J. Am. Ceram. Soc., 91(6), 1733 – 1746 (2008). URL: https://doi.org/10.1111/j.1551-2916.2008.02445.x

  30. S. Ramesh, “Transport properties of Sm doped CeO2 ceramics,” Proc. Appl. Ceram., 15(4), 366 – 373 (2021). https://doi.org/10.2298/PAC2104366E

    Article  CAS  Google Scholar 

  31. A. Pimenov, J. Ullrich, P. Lunkenheimer, et al., “Ionic conductivity and relaxations in ZrO2–Y2O3 solid solutions,” Solid State Ionics, 109(1 – 2), 111 – 118 (1998). URL: https://doi.org/10.1016/S0167-2738(98)00082-4

  32. H. Yamamura, S. Takeda, and K. Kakinuma, “Relationship between oxide-ion conductivity and dielectric relaxation in Sm-doped CeO2,” Solid State Ionics, 178(13 – 14), 889 – 893 (2007). URL: https://doi.org/10.1016/j.ssi.2007.04.013

  33. K. P. Padmasree and D. K. Kanchan, “Conductivity and dielectric studies on 20CdI2– 80[xAg2O – y (0.7V2O5– 0.3B2O3)] super ion conducting system where 1 ≤ x/y≤3,” J. Non-Cryst. Solids, 352(36 – 37), 3841 – 3848 (2006). URL: https://doi.org/10.1016/j.jnoncrysol.2006.06.012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Sudzhanskaya.

Additional information

Translated from Steklo i Keramika, No. 3, pp. 26 – 32, March, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudzhanskaya, I.V., Sotnikova, V.S. Electrical Characteristics of Bismuth-Containing Cerium Oxide. Glass Ceram 80, 100–104 (2023). https://doi.org/10.1007/s10717-023-00565-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-023-00565-x

Keywords

Navigation